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Abstract  Accurate prediction of missing hydro-meteorological data is crucial in planning, design, development 
and management of water resources systems. In the present research, prediction of such data using Artificial Neural 
Networks (ANN) based on temporal and spatial auto-correlation has been conducted for upper Tana River basin in 
Kenya. Different ANN models were formulated using a combination of numerous data delays in the ANN input 
layer. The findings show that the best models comprise of a feed-forward neural network trained on Levenberg-
Marquardt algorithm with single hidden layer. Additionally, the best ANN architecture model for predicting missing 
stream flow data was at gauge station 4CC03 with correlation coefficient and MSE of 0732 and 0.242 respectively 
during validation. Temporal auto-correlation of the observed and the predicted stream flow values were evaluated 
using a correlation coefficient R that resulted to highest value of 0.756 at gauge station 4AB05. The best ANN 
model for prediction of missing precipitation data was at station 9037112 with R value of 0.970. In both cases the 
best performance was at epochs 9 and 20 respectively. The spatial auto-correlation show that the best ANN 
architecture model for prediction of missing stream flow data was at gauge station 4CC03 with R value of 0.723, 
while the one for precipitation was at station 9037096 with R value of 0.712 during the validation. The results 
indicate that the spatial auto-correlation of hydro-meteorological data using ANN is better than the temporal auto-
correlation in the data prediction in upper Tana River basin. 
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1. Introduction 
Among the hydro-meteorological data in a river basin, 

precipitation and stream flow are the most important. This 
is because of their application in water resource systems 
analysis, water balance computations [1], estimation of 
extreme events such as floods and drought that adversely 
affect socio-economic development [2] is vital. Scarcity of 
hydro-meteorological data in a river basin may be due 
lack of measuring instruments, damage of measuring 
instruments or negligence in measurements. It is not 
appropriate to discontinue or abandon a water resources 
project in any stage; planning, design or development due 
to incomplete hydro-meteorological data. Estimation of 
relevant missing hydro-meteorological data is inevitable 
for any river basin with specific hydrologic processes. 
Accurate estimation of the missing hydro-meteorological 
data increases the prospect and ensures success of a water 
resources project. According to [3] and [4], efficient 
prediction of any missing hydro-meteorological data 
require the spatial and temporal variation of their 
magnitudes and related physical processes at basin scales.  

Some of the conventional techniques used in filling 
missing data include interpolation and extrapolation, 
Inverse Distance Weighting (IDW), differentials and 
formulation of kernel functions. These methods have 
successfully been applied by [4,5,6,7,8] respectively. The 
main challenge with these methods is that they are time 
consuming, sometimes giving errors in their results. The 
hydrological river basin processes are stochastic and non-
linear in nature. These processes have always been 
explained using physically based methods which are 
complex. Numerous models have been developed to study 
stochastic hydrological processes. These include ANN 
models which have been extensively tested in modeling 
and forecasting of non-linear hydrological systems and 
extreme events such as droughts [9] and floods [10,11] 
and [12]. Numerous methods have previously been used to 
address data lack or limitation of data availability in 
different river basins. For instance, [13] and [14] 
estimated potential evapotranspiration and reference crop 
evapotranspiration for 31 provinces in Iran using average 
data from 181 synoptic stations and three temperature-
based formulae. Spatial interpolation method was used to 
obtain an average value for different stations. In addition, 
[15] used multivariate fractional polynomial (MFP), 
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Bayessian regression and robust regression to estimate 
reference evapotranspiration for three arid regions within 
which water crises is critical. 

2. Artificial Neural Networks 
An artificial neural network (ANN) model is an 

information processing system developed with a structure 
and operation similar to that of a human brain [16]. The 
ANN models have been improved over time by various 
calibration techniques. With sufficient amount of data and 
complexity, the ANN model can be adapted to establish 
any correlation between series of independent and 
dependent variables [17]. ANNs have some advantages 
[18,19] and [11] that attracted their use in this research. 
These advantages include: 

i) the ability to process information based on their 
dynamic response to external input 

ii) they can capture numerous kinds of relationships 
including non-linear functions which are not 
usually detected by other techniques 

iii) they provide effective analytical techniques in 
modeling and forecasting systems 

iv) the networks have the ability to model dynamic 
time series variables in Water Resources 
Engineering  

v) the definition of physical processes need not be 
done and this. property makes it appropriate in 

processing large and complex data sets, including 
that of drought forecasting 

The ANN model processes information through an 
elaborate network of neurons that are linked together. It 
predicts outputs based on defined inputs [20] by a working 
principle resembling that of human brain where the neuron 
receives a set of input signals and generates outputs. The 
nervous system of human beings is represented by a 
number of architectural structures that range from simple 
to complex structures. Whether the structures are simple 
or complex, the systems consist of neurons or neural cells 
as the chief building blocks.  

An ANN model is similar to a biological neuron in that 
it has multiple input channels, data processing unit, and 
output channels called dendrites, cell body and the axon 
respectively as represented in Figure 1. The input signals 
(X1, X2, . . . , Xp) are passed to the neuron through the 
dendrites that represent different input channels. Each 
channel has its own weight referred to as connection 
weight that may be denoted as W1, W2,. . . ,Wp. The 
weights are very critical since they allow for collection 
and processing of signals based on their magnitude and 
effects on input functions. If a weight function gives a 
non-zero value at the synapse, it is allowed to pass 
through the cell body. Otherwise, if it has a value of zero, 
it is not allowed to pass the cell body. All the conveyed 
signals are normally integrated by summing up all the 
inputs [21]. 

 
Figure 1. Fundamental parts of a typical neural network 

The summation is achieved by application of a 
mathematical model referred to as activation function, 
within the cell body to generate an output signal. 
According to [21] and [3], the relationship between the 
input and output signal within an ANN model is 
represented using different data combinations and weight 
attached. This result into a function defined as: 

 ( )
p

i i k
i
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= = +  
 
∑  (1) 

Where; 
Xi = the input signal i 
Wi =the weight attached to the input signal i 
P =the number of input signals 
bk =the bias at the cell of the body 
Y = the output 
f=activation function 
Numerous activation equations or functions can be used 

within the neurons. The most common functions used in 
the ANN models include; the step-function, non-linear 
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sigmoidal, hyperbolic tangent and linear activation 
functions [22] and [16]. 

ANN models have previously been used for estimating 
missing data values. Some of the research that 
demonstrate the use of ANN in prediction and filling 
missing data include the work by [23-31] has showed that 
non-linear autoregressive neural network with exogenous 
input (NARNNX) was better than non-linear 
autoregressive neural network (NARNN) in forecasting 
precipitation in Gilan, Iran. However, the use of artificial 
neural networks in prediction of hydro-meteorological 
data in upper Tana River basin has not been explored. 
This basin is a key water resource in Kenya for hydro-
electric power generation, water supply and agriculture. 
The main objective of this research was to predict and test 
the efficiency of estimation of missing hydro-
meteorological data series using artificial neural networks 
(ANN), for upper Tana River basin. 

3. Materials and Methods 

3.1. The Study Area 
The upper Tana River basin with an area of 17,420 km2 

(Figure 2) was the focus of the presented research. The 
upper Tana River basin lies between latitudes 000 05' and 
010 30' south and longitudes 360 20' and 370 60' east. The 
basin is fundamental in influencing the ecosystem 
downstream [32]. It drains nine counties namely; Muranga, 
Nyandarua, Kiambu, Kirinyaga, Laikipia, Machakos, 
Nyeri, Embu and Kitui [33]. The basin was selected 
because it is located within a fragile ecosystem that 
represents all agro-ecological zones of Kenya where water 
resource systems, hydro-electric power generation and 
food security are negatively impacted by frequent drought 
occurrence. The basin area regulates the hydrology of the 
Kenya’s largest river system called Tana River Basin with 
a total area of 126,000 km2 [34]. Within the upper Tana 
River basin, numerous socio-economic activities such as 
hydro-power generation, agriculture, and irrigation take 
place. 

 

 

 

 
 

 

 
Figure 2. Map of Kenya showing the upper Tana River basin 

3.2. Stream Flow Data 
There were approximately fourteen gauge stations in 

the upper Tana River basin with complete and incomplete 
data records. However, only eight stations were selected 
for this study since they had sufficiently long and reliable 
data for the period 1970-2010 as required by this study. 
The stations were in addition considered a realistic 
representative of the basin as they are objectively located 
within low, lower middle, middle and higher elevations 
for different agro-ecological zones as required in the study. 
The names of the stations and gauge identification (ID) 
numbers, their spatial locations are shown in Figure 2 and 
Table 1 respectively. 

Table 1. Stream flow gauge stations 

S.No Gauge Name Gauge ID 
Coordinates 

Easting Northing 

1 Amboni 4AB05 36.989 -0.350 

2 Sagana 4AC03 37.043 -0.449 

3 Gura 4AD01 37.076 -0.517 

4 Tana sagana 4BC02 37.207 -0.672 

5 Yatta furrow 4CC03 37.361 -1.094 

6 Nyamindi 4DA10 37.317 -0.621 

7 Rupingazi 4DC03 37.438 -0.533 

8 Kamburu 4ED01 37.683 -0.800 
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3.3. Precipitation Data 
In the upper Tana River basin, data from twenty four 

meteorological stations were obtained from the Ministry 
of Environment, Water and Natural resources. Such 
stations provided precipitation data. The stations were also 
objectively located within the low, lower middle, middle 
and high elevations so as to study drought characteristics 
at different agro-ecological basin of the basin. 

Table 2. Meteorological stations 

S.No Station name Station ID 
Coordinates 

Elevation 
Longitude Latitude 

1 MIAD 9037112 37.350 -0.700 1246 

2 Embu 9037202 37.450 -0.500 1494 

3 Kerugoya DWO 9037031 37.327 -0.382 1598 

4 Sagana FCF 9037096 37.054 -0.448 1234 

5 Nyeri 9036288 36.970 -0.500 1780 

6 Muragua G. E. F. 9036212 36.850 -0.750 2296 

7 Naro moru F.G.P. 9037064 37.117 -0.183 2296 

8 Mangu HS 9137123 37.033 -1.100 1630 

3.4. Temporal Auto-correlation Based on 
ANN Models 

The hydro-meteorological data was partitioned into 
70% and 30% training and validation both for stream flow 

data and precipitation data at each station. By considering 
different input neurons with different time delays; t, t-1, t-
2,…,t-n, in the input layer, the ANN structure for each 
station was obtained. Hidden layer neurons initially 2n+1, 
increase and decrease using trial and error technique. The 
output was is the predicted variable. Thus the neural 
network has three layers; input layer, hidden layer and the 
output layer (Figure 3a and Figure 3b). The ANN model at 
each station was trained using different structures (Table 3). 
The output layer comprise of neurons in all the networks 
that are equal to the next month’s predicted value (It+1). 
For the present study, feed-forward neural network (FFN) 
and recursive neural network (RNN) were tested in the 
model training. Initially three different training algorithms 
were applied to train the structures; Back-propagation 
(BP), Conjugate Gradient (CG) and Levernberg-
Marquardt (LM). Preliminary results indicated that a 
three-layer feed forward neural network with different 
input and hidden neurons was the best in performance, and 
that the superlative results were also obtained using the 
LM training algorithm. Thus the results presented are for 
best ANN structure of three-layer feed forward network 
based on LM training algorithm. The monthly data for 
different previous months was auto-correlated with the 
next month’s predicted value. The performance of the 
auto-correlation was done using performance criteria of 
the correlation coefficient R, and mean square error (MSE) 
presented in Equations 3 and 4. 

 
Figure 3. ANN model Architecture used for prediction of missing (a) meteorological and (b) stream flow data based on spatial auto-correlation 
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3.5. Spatial Auto-correlation Based on ANN 
Models 

It was expected that there exist spatial-autocorrelation 
among the hydro-meteorological for stations at different 
time delays. Seven stations were used at a time to estimate 
and/predict the hydro-meteorological variables at one of 
the eight stations at a time. From each station, 70% of the 
data was used for training while 30% was used validation. 
Figure 3b shows the schematic diagram for the proposed 
spatially correlated ANN model. Different ANN models 
were formulated using different time delays and hidden 
neurons. The results of the spatially auto-correlated ANN 
structures and training epochs are shown in Table 5 and 
Table 6. 

3.6. Performance Evaluation of the Models 
In ANN the input and output variables used in the 

modelling were normalized by fitting their values between 
zero and one to speed up the forecasting process as stated 
by [18]. In the present study, the recorded stream flow and 
precipitation data values were scaled from a minimum to 
maximum value by applying the following function: 
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Where; 
Xn= normalized/standardized value 
Xmin = the selected minimum value for standardization 
Xmax = the selected maximum value for standardization 
Xo = original variable value 
xmin = minimum value present in the original data set 
xmax = maximum value present in the original data set 
For the purpose of this research the Xmin and Xmax were 

chosen as 0.1 and 0.9 respectively as these have been found 
to give reliable results in hydrological studies [18]. After 
standardization, the prediction of data values for numerous 
stations was conducted. For illustration purpose, the results 
of selected stations are presented in the present paper. The 
normalized data was partitioned into training and validation 
data sets. At each hydro-meteorological station, 70% of 
continuous data was used for training while the remaining 
30% was used for validation purpose. In this research, two 
criteria were used to determine the efficiency of the ANN 
models. These included the correlation coefficient (R) and 
the mean square error (MSE). 

The statistical relationship between the observed and 
the predicated data values within the upper Tana River 
basin was done using the correlation coefficient (R). The 
fundamental function was customized to the respective 
data input and outputs of the following general form: 
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Where; 
R = the correlation coefficient 
IObs = the observed value of the hydro-meteorological 

variable 

ObsI = mean of the observed values the hydro-
meteorological variable 

IFor= the forecasted value of the variable 

ForI = mean of the forecasted values of the hydro-
meteorological variable 

n=number of data points considered  
The R is a measure of the strength of the relation 

between observed and forecasted DI values. It varies from 
0 to 1. The values of 0 and 1 indicate a poor and perfect 
forecasting capability of the model respectively. 
The Mean Square Error (MSE) is a measure of the 
difference between the observed and forecasted drought 
values from different indices. It measures the average of 
the squares of the errors between two values being 
compared. For the purpose of drought, the following 
function was adopted for calculating MSE associated with 
drought forecasting: 
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Where; 
MSE = the mean square error 
IObs = the observed value of the variable 
Ifor = the forecasted value of the ANN model 
n = number of data points 
The MSE ranges from 0 to 1. The smaller the MSE 

value the better the forecasting capability of the model. 

4. Results and Discussions 

Table 3. The best ANN structure used in filling of missing stream flow data for different gauging stations 

Gauge station Gauge 
ID 

Epoch 
No 

Coordinates Input function into the 
neurons 

ANN 
architecture 

R 
Train 

R 
validation 

MSE 
train 

MSE 
validation Longitude Latitude 

Amboni 4AB05 9 36.989 -0.350 ( ) ( )1 1 2, ,i i i iQ f Q Q Q+ − −=  3-9-1 0.545 0.735 0.214 0.105 

Sagana 4AC03 14 37.043 -0.449 ( ) ( )1 1,i i iQ f Q Q+ −=  2-9-1 0.621 0.724 0.312 0.213 

Gura 4AD01 20 37.076 -0.517 ( ) ( )1 1,i i iQ f Q Q+ −=  2-6-1 0.583 0.655 0.362 0.351 

Tana sagana 4BC02 9 37.207 -0.672 ( ) ( )1 1,i i iQ f Q Q+ −=  2-5-1 0.643 0.563 0.384 0.346 

Yatta furrow 4CC03 20 37.361 -1.094 ( ) ( )1 1 2, ,i i i iQ f Q Q Q+ − −=  3-9-1 0.701 0.732 0.276 0.242 

Nyamindi 4DA10 8 37.317 -0.621 ( ) ( )1 1,i i iQ f Q Q+ −=  2-2-1 0.684 0.654 0.332 0.344 

Rupingazi 4DC03 9 37.438 -0.533 ( ) ( )1 1 2, ,i i i iQ f Q Q Q+ − −=  3-6-1 0.595 0.673 0.346 0.318 

Kamburu 4ED01 10 37.683 -0.800 ( ) ( )1 1,i i iQ f Q Q+ −=  2-2-1 0.643 0.686 0.278 0.229 

Mean values       0.627 0.678 0.313 0.269 
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Table 4. The best ANN structure used in filling of missing precipitation data for different meteorological stations 

Gauge station Gauge 
ID 

Epoch 
No 

Coordinates 
Input neurons ANN 

architecture 
R 

Train 
R 

validation 
MSE 
train 

MSE 
validation Longitude Latitude 

MIAD 9037112 20 37.350 -0.700 ( ) ( )1 1 2, ,i i i iP f P P P+ − −=  3-10-1 0.758 0.797 0.325 0.056 

Embu 9037202 22 37.450 -0.500 ( ) ( )1 1 2, ,i i i iP f P P P+ − −=  3-9-1 0.654 0.752 0.287 0.172 

Kerugoya DWO 9037031 30 37.327 -0.382 ( ) ( )1 1,i i iP f P P+ −=  2-5-1 0.664 0.718 0.361 0.123 

Sagana FCF 9037096 40 37.054 -0.448 ( ) ( )1 1 2, ,i i i iP f P P P+ − −=  2-4-1 0.587 0.653 0.294 0.195 

Nyeri 9036288 20 36.970 -0.500 ( ) ( )1 1 2, ,i i i iP f P P P+ − −=  3-10-1 0.625 0.694 0.302 0.237 

Muragua G. E. F. 9036212 15 36.850 -0.750 ( )1)1( , −+ = ttt PPfP  2-4-1 0.581 0.635 0.275 0.228 

Naro moru F.G.P. 9037064 25 37.117 -0.183 ( ) ( )1 1,i i iP f P P+ −=  2-3-1 0.596 0.736 0.311 0.279 

Mangu HS 9137123 28 37.033 -1.100 ( ) ( )1 1,i i iP f P P+ −=  2-5-1 0.603 0.729 0.273 0.234 

Mean values       0.634 0.727 0.304 0.191 
 
Temporal auto-correlation of the observed and the 

predicted stream flow values was evaluated using a 
correlation coefficient R, giving 0.756 and 0.731 at gauge 
stations 4AB05 and 4AC03 respectively. The architecture 
for the best ANNs models at these stations are 3-9-1 and 
2-9-1. The best ANN model for filling missing 
precipitation data was at station 9037112 with R and MSE 
values of 0.970 and 0.056 respectively. In both cases the 
best performance was at epochs 9 and 20 respectively 
(Table 3 and Table 4). The prediction of stream flow was 
done for one month and or more to represent medium and 
long-term range that are critical to a hydrological risk such 
as drought (Morid et al., 2007) [18]. 

4.1. Spatial Auto-correlation of Hydro-
meteorological Data 

According to the results of spatial auto-correlation the 
performance of ANN changed by decreasing or increasing 
the number of hidden neurons from the initial 2n+1. From 
the results, the best ANN structure obtained was 7-8-1 
which defines ANN structure with seven, eight and one 
neurons in the input, hidden and output layers respectively 
trained at epoch 16 for station 4CC03. Comparing Table 1 
and Table 2 shows that the spatial auto-correlation is 
superior to temporal auto-correlation in estimating the 

missing values based on the R and MSE. This high 
performance in spatial auto-correlation is attributed to the 
fact that hydrological processes exhibit spatial variability.  

Feed-forward and RNN with different training 
algorithms; Back-propagation (BP), Conjugate Gradient 
(CG) and Levernberg-Marquardt (LM), were used to 
compare network performance using R MSE. The best 
structure was selected based on the best values of R and 
MSE during the training and validation periods as shown 
in Table 5 and Table 6. The results show that the best 
model was found to be a three-layer feed-forward neural 
network trained by the LM algorithm. This best model 
structure was then used to estimate the missing monthly 
hydro-meteorological data values. The simulated monthly 
time series of missing data values for the gauging stations 
4AB05 and 4DC03 are as shown in Figure 3 and Figure 4, 
while those for meteorological stations 9037096 and 
9037064 are given in Figure 5 and Figure 6 respectively. 
A plot of the observed and the predicted values show that 
the models are efficient on prediction capabilities. For 
instance the scatter plot obtained by plotting the predicted 
and observed values of stream flow for stations 4AB05 
and 4AC03 show that the points are consistently 
distributed on the 1:1 line, with correlation coefficient R 
values of 0.756 and 0.731 in that order (Figure 8). 

Table 5. The results of the best spatially auto-correlated ANN models for prediction of stream flow  
Station ID Epoch No ANN architecture R Train R validation MSE train MSE validation 

4AB05 10 7-10-1 0.798 0.674 0.033 0.041 
4AC03 14 7-9-1 0.682 0.702 0.025 0.046 
4AD01 12 7-6-1 0.784 0.675 0.038 0.048 
4BC02 11 7-10-1 0.690 0.712 0.042 0.047 
4CC03 16 7-8-1 0.821 0.723 0.044 0.329 
4DA10 14 7-6-1 0.756 0.686 0.039 0.043 
4DC03 12 7-7-1 0.654 0.632 0.042 0.246 
4ED01 15 7-10-1 0.676 0.634 0.038 0.044 

Table 6. The results of the best spatially auto-correlated ANN for prediction of precipitation 
Station ID Epoch No ANN architecture R Train R validation MSE train MSE validation 
9037112 8 7-8-1 0.721 0.613 0.043 0. 406 
9037202 6 7-8-1 0.673 0.626 0.025 0.033 
9037031 10 7-10-1 0.684 0.682 0.037 0.039 
9037096 5 7-12-1 0.726 0.712 0.026 0.326 
9036288 6 7-11-1 0.721 0.653 0.039 0.045 
9036212 12 7-9-1 0.675 0.697 0.038 0.042 
9037064 14 7-6-1 0.732 0.656 0.046 0.048 
9137123 20 7-12-1 0.702 0.681 0.029 0.236 
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The spatial auto-correlation show that the best ANN 
model for filling missing stream flow data was at gauge 
station 4CC03 with R and MSE values of 0.723 and 0.326 
respectively, while the best ANN architecture model for 
filling missing precipitation data was at station 9037096 
with R and MSE values of 0.712 and 0.329 respectively 
during the validation (Table 5 and Table 6). 

Monthly time series hydro-meteorological data were 
predicted for the period without data records. For instance 
at gauging stations 4AB05 and 4DC03, data was predicted 
for the period of years 2004 to 2010, and 2000 and 2010. 
The highest predicted stream flow values for the period 
for the stations were 12.44 and 15.65 m3/s (Figure 4 and 
Figure 5). On the other hand, the highest predicted 

precipitation values are 550 mm and 10 mm at meteorological 
stations 9037096 and 9037064, for the period 2002 to 
2007 and 2000 to 2010 respectively (Figure 6 and Figure 
7). Based on the validation R values, the prediction 
capability of ANNs models at gauged stations can be 
arranged from the largest to the smallest in the order 
4CC03, 4BC02, 4AC03, 4DA10, 4AD01, 4AB05, 4ED01 
and 4DC03 respectively. On the other hand, the ANNs 
models prediction capability at the meteorological stations 
decline from the largest to the smallest in the order of 
9037096, 9036212, 9037031, 9137123, 9037064, 9036288, 
9037202 and 9037112 respectively. The best ANN models 
from this study can be applied in other river basins with 
appropriate calibration and validation. 
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Figure 4. Monthly time series of predicted stream flow values at gauging station 4AB05 
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Figure 5. Monthly time series of the predicted stream flow values at gauging station 4DC03 
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Figure 6. Monthly time series of the forecasted values of missing data at meteorological station 9037096 
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Figure 7.Scatter plot for observed against predicted stream flow at gauge 
station 4AB05) 

 
Figure 8. Scatter plot for observed against predicted stream flow at 
gauge station 4AC03 

5. Conclusions 
In the presented study the artificial neural networks 

(ANN) was used to establish the relationship between the 
input and output of specified hydro-meteorological data 
combination. The ANN was used to formulate the 
temporal and spatial auto-correlation functions for 
prediction of missing hydro-meteorological data in the 
upper Tana River basin. As shown by the R and MSE 
values, the results indicate that the spatial auto-correlation 
of station data using ANN is better than the temporal auto-
correlation in predicting missing hydro-metric data for 
upper Tana River basin. From the three neural networks 
tested in this study, the most efficient network was found 
to be feed-forward neural network (FFN) which was 
trained using the Levernberg-Marquardt (LM) algorithm 

6. Recommendations 
It is recommended form this investigation that the 

methods and results of the research be applied to 
investigate temporal and spatial auto-correlation between 
numerous parameters for prediction of other hydrological 
processes such as soil erosion, sediment yield and runoff. 
Such prediction would be very useful in prioritized 
planning of the land use practices, agricultural practices, 
soil conservation and water supply within the upper Tana 
River basin. 
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