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Abstract  Land use data source can contribute to errors in watershed modeling. This paper evaluated the effects of 
using site-specific versus county-level aggregated land use data on Hydrologic Simulation Program-Fortran (HSPF) 
simulated contaminant losses. Site-specific land use was derived from the local watershed land use inventory while 
aggregated land use was derived from county-level data (percentage of county land in various land use categories 
and sub-categories). County level data are useful when modeling large watersheds such as the Chesapeake Bay 
Watershed when collection and use of site-specific data may be cost prohibitive. The study site was the 14,941 ha 
predominately rural Upper Opequon Watershed in northern Virginia, USA. Percentage relative errors in model 
output were calculated and compared using the two land use data sources. Results showed that use of aggregated 
land use data resulted in 13, 3 and 4 percent higher simulated sediment, and total nitrogen and phosphorus losses, 
respectively due to overestimated cropland area. The higher contaminant losses would suggest the need for more 
management measures to meet water quality goals. This study suggests that while the use of county-level aggregated 
land use data may be appropriate for developing basin scale pollutant reduction goals such as those in total 
maximum daily load (TMDL) plans, it should be used with extreme caution for watershed planning and 
implementation activities on smaller watersheds that may mandate site-specific changes in land management and 
costs for landowners. For smaller watersheds, TMDLs and their watershed implementation plans should utilize local 
site-specific spatial data that accurately reflects watershed conditions. This will help target resources where they are 
most needed and maintain credibility with local stakeholders while improving the accuracy of the developed 
pollution reduction plans. 
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1. Introduction 
Water quality models are commonly used in predicting 

watershed nonpoint source (NPS) pollution. In the US, 
detailed land use, agricultural production, and livestock 
population data collected by United States Department of 
Agriculture–National Agricultural Statistics Service 
(USDA-NASS) are often only available at county and 
state scales. The data are collected at the farm and/or 
field-scale, but the data are then aggregated to the county 
level to meet congressional landowner privacy mandates. 
These data are extensively used in large watershed-scale 
models such as the Chesapeake Bay Watershed Model 
(CBWM). While appropriate at the large watershed-scale, 
use of aggregated county level data for smaller watersheds, 
particularly those requiring site-specific TMDLs, may not 
be appropriate because such data may poorly represent 
local site-specific conditions. Studies [1,2,3] have 

addressed the impacts of geographical information system 
(GIS) spatial data resolution of site-specific data on model 
output uncertainty. However, there is considerably less 
information on uncertainty due to the disaggregation of 
county-level data to local watersheds requiring watershed 
management efforts such as TMDLs. This is particularly 
important for the CBWM, which relies on the use of 
county-level aggregated land use and BMP data and which 
some have suggested could be used for the development 
of local TMDLs. Studies that assess the impacts of using 
the county-level aggregated spatial data on local 
watersheds are largely missing. In the Chesapeake Bay 
Program (CBP), water quality modeling is accomplished 
at the basin or major tributary scale for planning and 
modeling, which yields insufficient detail for establishing 
specific loads or for determining specific, desired 
management changes at the small or subwatershed scale 
[4]. For instance, serious concerns have been raised by 
different stakeholders about local, subwatershed reduction 
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goals derived from the CBWM-TMDL [5]. The concerns 
relate to the manner in which the TMDL assumes a level 
of precision beyond its capability and without regard for 
the economic consequences to stakeholders. Thus, the 
objective of this study was to evaluate the effects of 
different spatial land use data sources on pollutant losses 
simulated by the HSPF model. Differences in HSPF 
simulated flow, sediment, total nitrogen (TN) and 
phosphorus (TP) losses using county-level aggregated 
land use data which were disaggregated to watershed and 
sub-basin levels were compared to those from local site-
specific land use. 

2. Methodology 

2.1. Study Area 
Upper Opequon Watershed located in northern Virginia 

was selected as the study watershed due to availability of 
historical flow, water quality, and land use data. The 
watershed is 14,941 ha in size and is south of the City of 
Winchester in Frederick County, Virginia. The Upper 
Opequon (39°06'30" N; 78°10'30" W) is part of the 
Opequon Creek Watershed (Figure 1). 

 

Figure 1. Study area –Upper Opequon Watershed, Virginia, USA 

Upper Opequon Creek runs for approximately 40 km 
from its headwaters to its confluence with Abrams Creek, 
which flows into the Lower Opequon and then into the 
Potomac River, which empties into the Chesapeake Bay 
[6]. The Upper Opequon watershed was delineated into16 
subwatersheds (Figure 2). 

 

Figure 2. Subwatershed delineation in Upper Opequon Watershed 

2.2. Description of HSPF Model 
The HSPF model is the core model of the CBWM and 

is supported by U.S. Environmental Protection Agency 
(USEPA) and U.S. Geological Survey (USGS) [7]. The 
HSPF model is a comprehensive watershed model and is 
commonly used for simulating point and NPS pollution 
and for developing TMDL plans for impaired water bodies 
[8]. The HSPF model simulates hydrology and water 
quality constituents, including sediment, bacteria, 
pesticides, nutrients (nitrogen, N and phosphorus, P) [9]. 

Cropland can be simulated with a detailed NPS 
simulation module known as agricultural chemicals 
(AGCHEM) that includes application of fertilizer and 
manures, atmospheric deposition, crop uptake, soil 
binding, denitrification, and surface export [10,11]. The 
AGCHEM sub-modules are process-based and include 
PEST (pesticides), NITR (nitrogen), and PHOS 
(phosphorus) and MSTLAY (soil moisture). The sub-
modules provide detailed simulation of complex nutrient 
balances and transport in the soil profile [12,13]. 
Comprehensive nutrient balances are important in 
identifying potential watershed areas for improvements as 
well as assessing the impact on water quality resulting 
from installed BMPs and land use changes [10,14]. 
Extensive inputs and parameters are required during 
AGCHEM application to represent physical, chemical and 
biological processes in the soil profile [15]. A simplified 
pollutant tracking module, PQUAL, which uses a simple 
regression relationship, can also be used to simulate 
pollutant losses from pervious areas but it does not 
consider nutrient cycling and balances. In this paper, three 
sub-modules of AGCHEM (MSTLAY, NITR and PHOS) 
were utilized in accordance with HSPF Users’ Manual 
guidance [12]. 

Table 1. Model input weather data stations 

Type of Data Location Source Frequency of Recording Period of 
Record 

Latitude 
Longitude 

Percentage of Possible Sun, Dew 
Point, Wind Speed 

Washington Reagan 
National Airport 

NCDC 
(USW00013743) 

1 Day 1945 – present  35°52’ N 
77°02’ W 

      
Hourly Rainfall Star Tannery NCDC 

(USC00448046) 
 

1 Hour  
1982 - present 39°4′ N  

78°25′ W 
      

Daily Rainfall, 
Min and Max Air Temp 

Winchester NCDC 
(USC00449181) 

1 Day 1982 – present 39°11’ N 
78°07’W 
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2.3. Input Weather Data 
Weather input data were obtained from the National 

Climatic Data Center (NCDC) weather stations (Table 1) 
[16]. The data required for creating the HSPF weather data 
files included hourly precipitation, average daily 
temperatures (maximum, minimum and dew point), 
average daily wind speed, and percentage sun. 

2.4.Observed Flow and Water Quality Data 
The available observed monthly water quality data 

included total suspended solids (TSS), nitrate (NO3-N) 
and phosphorus (PO4-P) concentrations as shown in Table 2.  

Table 2. Flow and Water Quality Observed Data  
Data type Source Time-step Data availability 

Stream Flow USGS Daily Jan. 1980- present 

TSS VADEQ Monthly Aug. 1991-Apr. 2007 

NO3-N VADEQ Monthly Aug. 1991-Dec. 2007 

PO4-P VADEQ Monthly Aug.1991-Dec. 2007 
Courtesy of VADEQ (Sieber, 2011 (personal communication)) 

2.5. Representation of Nutrients and Crops in 
HSPF-AGCHEM Model 

Crop rotation in the watershed’s cropland is typically a 
six-year cycle consisting of corn, soybeans, and four years 
of hay. Ninety percent of the corn/soybean acreage was 
simulated as receiving manure following discussions with 
the Lord Fairfax Soil and Water Conservation District 
(LFSWCD) extension specialist (Rau 2012, personal 
communication). Model parameters for planting, 
harvesting, fertilizer and manure application rates and 
dates, plant uptake of nutrients and erosion-related process 
were developed and included in the model user control 
input (UCI) file.  

The Upper Opequon Watershed is predominantly a beef 
producing watershed, it was assumed that no commercial 
fertilizer was applied on pasture. Fertilizer was only 
applied to field crops (corn, soybeans, winter cover crops 
and rotational hay) using application rates from the [17] 

and USDA’s Agricultural Census data (1992-2007) for 
Frederick County, VA. For cropland, N and P were 
applied in April and October. Urban and residential lawn 
fertilizer application rates were obtained from the Phase 
4.3 CBWM [18]. Atmospheric deposition nutrient inputs 
were supplied to the model via the HSPF-WDMUtil 
(Weather Data Management Support Tool) over the 
simulation period. Both the dry and wet deposition time 
series data for Frederick County, VA were available from 
the CBWM [10,19] for the period 1984 -2005 and these 
were extrapolated for the simulation period using the 
BASINS WDM utility tool.  

The annual cattle confinement schedule for the study 
watershed was obtained from VADCR and VADEQ 
(2003a). Manure application rates on cropland, application 
rates were estimated using reported values from the 
bacterial TMDL report for the Upper Opequon Watershed 
[6].  

Solid manure accumulated during confinement was 
applied to cropland January through May (prior to 
planting) and October through November after harvest. 
There were no dairies in the watershed. During spring, 
manure from cattle and poultry litter were surface applied 
to hay and no-till corn, and incorporated into the soil for 
corn in conventional tillage. Fall manure application was 
incorporated into the soil, and surface-applied to cropland 
under rotational hay. According to[6], there were 1,060 
cow/calf pairs on pasture in the Upper Opequon 
Watershed.  

The actual number of beef cattle varied throughout the 
year due to the presence and absence of calves. Cattle 
were distributed in subwatersheds 6, 9, 10, 15 and 16 as 
20, 100, 100, 446 and 394 cow/calf pairs, respectively. 
These were figures for 2003 and coincide with the 
2002/03 land use data used in the study. Manure loading 
on pasture was estimated by multiplying the total number 
of cow/calf pairs on pasture by the amount of manure 
produced, 81 kg/ha-day [20]. During confinement, solid 
manure produced by the cattle was collected for land 
application. Manure produced in each subwatershed was 
estimated based on the populations of beef cattle in the 
subwatershed and their confinement schedules, and land 
applied to cropland and pasture (Table 3). 

Table 3. Estimated monthly manure N and P inputs to cropland and pasture 

 Cropland Pasture 

Month NH4-N Org-N PO4-P Org-P NH4-N Org-N PO4-P Org-P 

 (kg/ha) (kg/ha) (kg/ha) (kg/ha) (kg/ha) (kg/ha) (kg/ha) (kg/ha) 

J 0.00 0.00 0.00 0.00 0.85-5.02 1.17-6.81 0.03-1.63 0.03-1.63 

F 18.46 24.43 5.83 5.83 0.76-4.53 1.08-6.19 0.05-2.51 0.05-2.51 

M 36.92 48.87 14.55 14.55 0.11-0.61 0.58-3.41 0.03-1.52 0.03-1.52 

A 36.92 48.87 14.55 14.55 0.11-0.61 0.13-0.82 0.01-0.51 0.01-0.51 

M 14.77 19.55 11.63 11.63 0.11-0.62 0.15-0.84 0.01-0.51 0.01-0.51 

J 3.70 4.89 2.91 2.91 0.11-0.58 0.13-0.80 0.02-0.76 0.02-0.76 

J 0.00 0.00 0.00 0.00 0.43-2.40 0.58-3.30 0.01-0.51 0.01-0.51 

A 0.00 0.00 0.00 0.00 0.43-2.40 0.58-3.30 0.02-1.01 0.02-1.01 

S 0.00 0.00 0.00 0.00 0.43-2.40 0.56-3.27 0.00-0.13 0.00-0.13 

O 5.62 7.44 8.85 8.85 0.21-1.24 0.29-1.69 0.01-0.51 0.01-0.51 

N 5.62 7.44 8.85 8.85 0.21-1.21 0.28-1.65 0.08-4.04 0.08-4.04 

D 0.00 0.00 0.00 0.00 0.21-1.26 0.29-1.70 0.03-1.63 0.03-1.63 
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2.6. Modeling Watershed Spatial Scales of 
Land Use Data 

In 2003, Virginia Tech [6,21] verified the Upper 
Opequon site-specific land use based on the Virginia 
Department of Conservation and Recreation (VADCR) 
1995-1997 aerial photographs and NLCD (2002) data. The 
VADCR identified 24 site-specific land uses in the Upper 
Opequon Watershed. This paper consolidated the 24 land 
uses into 6 categories (cropland, pasture, loafing lot, forest, 
residential, urban) for modeling purposes. These data 
provided the site-specific land use dataset for the Upper 
Opequon Watershed. 

The Upper Opequon Watershed county-level 
aggregated land use data were developed for 2002 and 
were obtained from the CBP Phase 5.32 model database 
[22]. The county-level aggregated data were then 
disaggregated to subwatersheds based on the 
subwatershed to watershed area ratios. The distribution to 
the watershed was necessary because the county scale of 
CBWM output limits the development of targeted 
management actions at a finer spatial scale [4]. The 
county-wide aggregated land uses in the CBWM database 
had 25 land use categories. The CBWM combines GIS 
spatial data and Classification and Regression Tree 
(CART) analysis to generate the Bay-wide land use data. 
The data sources used are National Land Cover Database 
(NLCD) imagery, USDA-Agricultural Census data by 
county, NOAA Coastal Change Analysis Program 
(CCAP), and Landsat Raster Reflectance [10]. Many of 
the CBWM agricultural categories were not strictly land 
uses. Some land uses also reflected BMPs, and these did 
not strictly equate to spatially-derived land use categories. 
The 25 CBWM land uses were reclassified and 
consolidated into 6 broader agricultural and 
urban/residential land use categories to match the site-
specific land uses. 

2.7. Statistical Analysis 
The model performance criteria was evaluated using the 

following equations for percent bias (PBIAS), the 
coefficient of determination (R2), and the Nash-Sutcliffe 
Efficiency (NSE): 
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The Percent bias (PBIAS) (measures the tendency of 
the simulated data to deviate from the observed values 
[23], coefficient of determination (R2) which measures the 
level of co-linearity between simulated and observed data 
[24] and Nash-Sutcliffe Efficiency (NSE) (determines the 
relative magnitude of the residual variance compared to 
the variance of observed data [25]. [26] recommended a 
general satisfactory model simulation if NSE > 0.50 and 
PBIAS ± 25% for daily streamflow, PBIAS ± 55% 
sediment, and PBIAS ± 70% for nitrogen and phosphorus, 
respectively at monthly time-steps. Donigian (2000) 
suggested that PBIAS be considered satisfactory if ± 25% 
for streamflow, ± 45% for sediment and ± 35% for 
nutrients, respectively at monthly time-steps for the HSPF 
model. Positive PBIAS values suggest model under-
prediction while negative values represent systematic 
model over-prediction of the concerned parameter[26]. 
[27,28,29] suggested that R2 value of at least 0.50 is 
acceptable for satisfactory model performance. 

Model predictions were compared based on outputs 
from the site-specific and disaggregated land use data for 
the period 1988 to 2009. Differences in modeled 
constituents were quantified as percentage relative errors 
(RE) using the following equation: 

 d ss

ss

LU -LU
RE= *100%

LU
 (4) 

where LUd = modeled output from disaggregated land use 
and LUss = the modeled output from site-specific land use. 
Bench-mark conditions were based on the site-specific 
land use as it represented the local conditions in the 
watershed. Statistical significance tests were performed 
using the Wilcoxon signed-rank test at 95% significance 
level due to its wide application in watershed studies [30-35]. 

3. Results and Discussions 

3.1. Model Calibration and Validation 
The Upper Opequon HSPF model hydrology was 

calibrated for the period 1987 to 1992 and validated from 
1993-1997 in the 2003 Opequon Creek bacteria TMDLs 
[6,21] at a daily time-step. Thus, hydrology recalibration 
was not necessary and the existing 2003 bacterial TMDLs 
calibrated hydrology parameter values were judged 
adequate based on 1998-2002 hydrology validation run 
results. For sediment, TN and TP sensitivity analysis was 
used to identify candidate parameters for calibration 
(1988-1997) and validation (1998-2002). A one year data 
period, January to December 1987, prior to the calibration 
period was used utilized as a dynamic model 
initialization/spin-up period to allow for stabilization of 
model state variables. Simulated data from this period was 
discarded and not used for model calibration or validation. 
Sensitive parameters were identified via calculating 
relative sensitive indices and ranking them [36,37]. 
Sensitivity analysis characterizes the impact of changes in 
model inputs on the model outputs [38]. 
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Table 4 provides a summary of model evaluation results for flow, TSS, NO3-N and PO4-P outputs. 

Table 4. Model evaluation results for daily flow and monthly water quality constituents 
  Daily flow statistics  
 Calibration Validation (1998 – 2002) 
 PBIAS R2 NSE PBIAS R2 NSE 
 - - - 7.34 0.60 0.65 

Remarks - - - Very good Acceptable Good 
Monthly statistics for water quality constituents 

 Calibration (1988 – 1997)  Validation (1998 – 2002)  
Constituent PBIAS R2 NSE PBIAS R2 NSE 

TSS 19 0.63 -0.74 -18 0.67 -0.97 
Remarks Good Acceptable Not Acceptable Good Acceptable Not Acceptable 
NO3-N 6 0.50 -0.84 -4 0.50 -1.05 

Remarks Very good Acceptable Not Acceptable Very good Acceptable Not Acceptable 
PO4-P -37 0.89 -1.19 46 0.86 -0.56 

Remarks Good Acceptable Not Acceptable Satisfactory Acceptable Not Acceptable 
Generally, based on the criteria defined in section 2.7 

and the land use distribution over the subwatersheds for 
the two land use categories, the model performance was 
satisfactory except for the NSE statistics for water quality 
constituents calibrated and validated. The negative NSE 
values <0.0 indicate that the mean observed value is a 
better predictor than the simulated value, which indicates 
unacceptable performance. The NSE statistic is sensitive 
to extreme values, which were observed in the monitored 
data for all the simulated water quality constituents. For 
instance, high TSS values were reported even on days 
with no or very little precipitation. The corresponding 
generated flow on such occasions was barely available to 
transport sediment downstream. Such data points might 
have resulted from some upstream disturbance during 
sampling, such as livestock in the stream and and/or 
extremely high algae concentrations during low flow 
periods. High extreme values (7 out of 56 observed data 
points) not matching rainfall occurrence were treated as 
outliers and removed from the observed data time-series 
but still 10 extreme data points of the 56 observed values 
were kept to maintain a sufficient sample size. 

The poor NSE statistic performance can be attributed to 
its sensitivity to high extreme values. [39] reported that 
NSE is very sensitive to extreme values due to their 
squared differences. A review by [26] reported NSE 
values of -3.35 and -2.46 for flow and sediment, 
respectively at a monthly time-step. A study by [40] 
reported NSE value of 0.05 for a stream flow simulation at 
a monthly time step. In all the cases the NSE statistic was 
attributed to sensitivity associated with input data 
deficiencies. Better results can be obtained through the use 
of more detailed, complete and more accurate data [40]. 
Additionally, the HSPF model was observed to over 
predict nutrient concentrations during extreme dry weather 
flows of less than 12 mm. A similar observation was also 
reported in bacteria HSPF simulations under low-flow 
conditions [41,42,43]. 

In the case of bacteria simulations, the HSPF model is 
modified by introducing a “cut-off stage” which simply 
stops the model from simulating bacteria loads from direct 
deposit sources[41,42]. This approach could not work for 
nutrient simulations and therefore this study concluded 
that over-prediction during low flow conditions is a 
limitation in HSPF that requires further research. However, 
this model limitation did not affect the expected modeled 
total nutrient loads, because the model calculates mass as 

a product of concentration and discharge (volume) at a 
given point in time, and therefore the high concentration at 
low flow conditions did not affect the pollutant load 
predictions. 

3.2. Annual Modeled Flow and Water Quality 
Responses 

The comparison of land use distribution across the 
subwatersheds of the study area showed mixed results 
with both major and minor differences observed in land 
use areas for both data sources (site-specific and 
disaggregated). The differences varied across the 
subwatersheds. At the watershed level, these differences 
in area were minor except for cropland. The cropland area 
for the entire watershed differed by 56% based on the site-
specific and disaggregated land use areas of 805 and 1,258 
ha, respectively. Loafing lots differed by1,381% though 
their areas were 1 and 16 ha for site-specific and 
disaagregated land use categories, respecitvely. Large 
differences incropland and loafing lots areas can result in 
significant variations in modeled loadings as they are 
major sources of nutrient loads per unit area. For the 
watershed as a whole, the overall difference in total area 
was 43.5 ha (based on the total site-specific land use area 
of 14,941 ha and disaggregated land use area of 14,898 ha) 
for the two land use data categories. This difference 
represented about 0.30% of the total watershed area which 
is negligible when compared to the total site-specific 
watershed area of 14,941 ha. The minor difference in the 
total area resulted from the different approaches used in 
deriving the land use categories (section 2.6). These 
results imply that with increasing watershed scale, 
disaggregated land use data are appropriate for basin-scale 
modeling but may not be accurate at a local scale. The 
effects of land use area differences on average annual 
simulated flow and loadings from the two land use 
assessments are given in Table 5. 

Simulated sediment loads at the watershed outlet from 
cropland and loafing lot had the largest variation with RE 
of 105 and 225%, respectively (Table 5). The large RE in 
sediment loss from cropland would be expected as the 
land use had a difference of 453 ha representing 56% of 
the 805 ha and 1,258 ha of the site-specific and 
diasaggregated land use data, respectively. The rest of the 
land uses showed the site-specific predictions being either 
slightly more or less than outputs from disaggregated land 
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use data. Results in Table 5, show Total N and TP REs are 
similarly higher for cropland and loafing lots. The RE of 
loss of TN from cropland was 17% while that of TP is 
33%, respectively. Similarly, RE of total N and TP losses 
from loafing lots are 111% and 63%, respectively. 
However, the differences in simulated pollutant losses 
from the loafing lots at the watershed scale are of little 
significance because little land (site-specific (1 ha) and 
disaggreagted (16 ha)) is involved. Compared to the other 
simulated constituents, sediment has the largest RE of 

13% (Table 5) at the outlet of the watershed with most of 
the difference due to at the cropland losses. Total N and 
TP had REs of 3 and 4%, respectively at the watershed 
level. Flow has RE of 5% at the outlet of the watershed. 
Results in Table 5 show that modeled predictions from 
both land use datasets balance out at the watershed scale. 
The variations in simulated constituents were observed to 
correspond to differences in land use areas, primarily due 
to differences in loadings from cropland. 

Table 5. Effects of land use on average annual simulated flow, sediment, TN and TP loadings at watershed outlet 

Land Use 
Flow (mm) Sediment (Mg/yr) TN (kg/yr) TP (kg/yr) 

site-spec1 Disagg2 RE* site-spec disagg RE site-spec disagg RE site-spec disagg RE 

Cropland 51 82 60.8 2,879 5,906 105.1 69,198 80,932 17.0 6,816 9,028 32.5 

Pasture 94 93 (1.1) 6,370 6,227 (2.2) 85,955 85,873 (0.1) 10,850 10,754 (0.9) 

Loafing Lot 30 41 36.7 4 13 225.0 10,156 21,415 110.9 1,719 2,799 62.8 

Forest 97 92 (5.2) 8,241 7,831 (5.0) 71,630 67,446 (5.8) 9,612 8,514 (11.4) 

Urban 72 63 (12.5) 148 116 (21.6) 67,560 68,711 1.7 8,952 8,897 (0.6) 

Residential 72 67 (6.9) 708 567 (19.9) 79,244 70,424 (11.1) 8,134 8,081 (0.7) 

Total 416 438 5.3 18,350 20,660 12.6 383,743 394,801 2.9 46,083 48,073 4.3 
1site-specific land use; 2 disaggregated land use; *% relative error between sit-specific and disaggregated land uses, and quantities in brackets indicate 
simulated constituents from site-specific land use are higher than disaggregated land use. 

Table 6 presents a summary of RE in annual simulated 
flow and loads and their corresponding tests of 
significance differences at the subwatershed level. 

For stream flow, most subwatersheds generally had 
differences that were less than 10%, except cropland 
(61%), loafing lots (37%) and urban land uses (13%). The 
differences in flow due to land use source were 
significantly different in all subwatersheds except 
subwatershed 6 (p = 0.095). County-level disaggregated 
land use data produced higher loads than site-specific land 
use data. Sediment has maximum and minimum 
differences of 20% in subwatershed 3 and 0.2% in 
subwatershed 15, respectively. Test of significance 
showed sediment not significantly different in 

subwatersheds 8 (p = 0.6640) and 9 (p = 0.2340). Total N 
has its highest difference of 19% in subwatershed 16 and 
minimum RE of -0.3% in subwatershed 12, and the load 
differences were significantly different in all 
subwatersheds (p < 0.0001). In subwatersheds 12 and 14, 
modeled TN from site-specific land use data exceeded the 
disaggregated land use output by -0.3 and -3.2%, 
respectively. Total P had its maximum and minimum 
differences of 22% and 2% in subwatersheds 16 and 14, 
respectively. Total P loads were significantly different 
except in subwatersheds 9 (p = 0.485) and 14 (p = 1.000). 
In general, differences in flow and pollutant losses were 
significantly different in almost every subwatershed with 
the two land use data sources. 

Table 6. Effects of site-specific and disaggregated land use on flow, sediment, TN and TP at subwatershed level (α = 0.05) 
 Flow Sediment Total N Total P 

Subwatershed difference (mm) RE difference (Mg-sed) RE difference (kg-TN) RE difference (kg-TP) RE 

1a 22 5.3 2,310 12.6 11,058 2.9 1,990 4.3 

2 (6.4) 3.0 2,222 12.3 13,946 (3.7) 1,651 4.2 

3 3.5 3.3 112 19.9 202 4.5 65 10.3 

4 5.5 2.4 1,953 11.0 9,589 7.6 1,685 9.3 

5 1.0 7.3 115 12.3 659 9.3 93 9.4 

6 (0.7) (0.2)* 1,835 0.5 8,792 7.2 1,571 9.1 

7 (2.2) (8.8) 432 2.2 1,422 14.2 256 19.8 

8 1.0 0.3 1,212 0.4* 5,972 5.3 1,107 6.8 

9 (3.4) (9.2) 241 0.6* 655 3.5 148 2.1* 

10 3.5 1.4 866 0.3 4,210 4.6 774 5.7 

11 2.3 1.2 781 0.4 3,761 5.9 835 8.9 

12 (0.5) (1.3) 311 0.6 -63 (0.3) 878 9.4 

13 3.3 2.5 366 0.2 4,860 6.6 2.6 7. 6 

14 (2.1) (11.5) 263 1.7 -303 (3.2) 25 2.0* 

15 5.3 6.0 193 0.2 4,278 7.9 731 10.9 

16 2.9 6.2 432 0.7 4,869 18.7 726 21.5 
a watershed outlet, *indicates output not significantly different, RE = percentage relative error from equation (1) and quantities in brackets indicate 
simulated constituents from site-specific land use are higher than disaggregated land use. 



 American Journal of Water Resources 60 

 

3.3. Implications of Load Variations on 
TMDL Implementation Strategies 

In general, TMDL plans are selected and implemented 
based on the long-term average annual loadings. Most 
TMDLs are developed with a 10% margin of safety (MOS) 
[6,44,45,46,47]. In this study, the difference of 
approximately 13% in sediment loads at the watershed 
outlet exceeds the commonly used 10% MOS and 
suggests that differences due to land use sources may need 
to be considered. For TN and TP, the relative errors at the 
watershed outlet were 3 and 4%, respectively, which are 
generally less than the 10% MOS limit. The results 
suggest that the planning process based on simulated loads 
obtained from disaggregated land use data sources may 
result in the developing of more management plans over 
the actual practices required. Additionally, the higher 
loads with disaggregated land use when compared to site-
specific land use have direct implications on watershed 
pollution control management cost estimates for the study 
watershed. The costs emanate from the number of 
additional BMP units required to meet target loads. For 
instance, estimated loading produced using disaggregated 
data would require more area with nutrient management 
plans (NMPs) and cover crop BMPs and more streamside 
fencing to achieve the target loadings. There are also extra 
unit cost estimates for design and installation, and hiring 
personnel for educational outreach. The cost estimates 
would be less in the present study with site-specific land 
use data, which resulted in lower loadings and BMP needs. 

To illustrate this point, NMPs are used to show the 
effect on probable costs that might be incurred if 
watershed implementation plans (WIPs) are developed on 
the basis of modeled disaggregated land use outputs. The 
average annual loads for TN from each land use 
distribution are 383,743 and 394,801 kg-TN/yr for site-
specific and disaggregated land use, respectively (Table 5). 
The corresponding TP loads are 46,083 and 48,083 kg-
TP/yr, respectively. Estimated costs for implementing 
NMPs on cropland include the cost of equipment and 
labor for soil testing and possibly manure storage, hiring a 
consultant to design the plan, and the costs of applying 
nutrients in a different manner. There is also the 
possibility that NMPs will reduce farming costs due to 
reduced nutrient application costs but analysis focuses on 
the additional costs associated with cost-shared NMPs. 
Assuming a 3-year useful life for a plan once it is 
developed, and including the costs of soil testing, 
implementation and in some cases cost savings and yield 
increases, net cost estimates range from -$74.10/ha-yr 
(that is, a net cost savings due to cost savings from 
manure transportation out of the farm) to $34.58/ha-yr in 
2001 dollars [48,49]. 

In this paper, a cost estimate of $34.58/ha-yr is used, 
the worst case possible. This cost estimate does not 
specifically refer to the practice in the study watershed, 
and thus is only used for comparison purposes. Assuming 
that NMPs are implemented on cropland, Table 4 provides 
56% (453 ha) more cropland area as a result of using 
disaggregated land use. Additional costs of implementing 
NMPs on cropland would be $15,665/yr. The additional 
cost to meet target TN laods for cropland is $1.42 /kg-
TN/yr reduced. Thus, errors in assessing the correct land 

use distribution in a watershed can affect pollution 
abatement estimates during planning and can have other 
implications in terms of modeled loadings. The CBP has 
considered using county-level aggregated land use data in 
modeling local watersheds to develop local TMDLs. The 
choice of using county-level aggregated land use data 
should be determined by comparing the costs associated 
with acquiring and utilizing site-specific land use data, 
which will provide more accurate NPS pollution control 
assessment and targeting of limited pollution control 
resources with the potentially inflated control costs with 
disaggregated land use data. Generally, this assessment 
implies that using disaggregated data results in more 
uncertainty during TMDL development that must be 
addressed during the development of the implementation 
plan. Saving costs during TMDL development may result 
in less confidence in required TMDL loads. This would 
result in more effort (higher WIPs costs) during 
implementation planning to better characterize the 
uncertainty and develop attainable WIPs. In the study 
watershed, the use of disaggregated land use data 
(compared to the site-specific land use) overestimated 
cropland and loafing lot areas and pollutant losses. 
However, this may not be the case for other watersheds. 
For example, watersheds with high proportions of 
cropland might have less cropland using county 
aggregated data and thus end up with lower estimated 
losses. 

4. Conclusions and Recommendations 
From this research, the modeled responses showed that 

sediment, TN and TP were all affected by the differences 
in the land use data sources. Disaggregated county-level 
land use data provided higher cropland and loafing lot 
estimated areas than site-specific land use for the study 
watershed, which contributed to higher simulated loadings 
using disaggregated data. It is concluded that for smaller 
watersheds, depending on the accuracy required for 
modeled responses, use of the disaggregated data is less 
desirable than the use of site-specific data. If good 
resolution and quality local satellite or other land use 
imagery is available, combining it with the aggregated 
data may provide a better option than using disaggregated 
data alone and future research should investigate how this 
can be done in an effective manner. Online tools such as 
google earth, google maps and bing search tools are likely 
to provide useful supplementary land use data information 
for a given location. Additionally, local land use data in 
broad categories of urban, forest, and agricultural are 
almost always available from remote sensed data sources. 
These data might be combined with disaggregated county 
data on agricultural land uses to better represent different 
agricultural land use subcategories (cropland, loafing lots, 
pastureland, hay land, etc.) in the watershed. Generally, 
county-level land use data disaggregated to sub-county 
watersheds based solely on watershed area do adequately 
represent site-specific watershed conditions for quality 
planning purposes. The study suggests that site-specific 
land use data are preferred during TMDL implementation 
planning to maintain credibility with local stakeholders 
and improve the accuracy of the developed WIPs. 
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List of Abbreviations 
AGCHEM AGCHEM is the HSPF module that 

allows users to model nutrients as part 
of the processes that take place in 
pervious segments of watersheds 

BMPs Best Management Practices which refer 
to reasonable and cost-effective means 
to reduce the likelihood of pollutants 
entering a water body 

BASINS Better Assessment Science Integrating 
Point and Nonpoint Sources, an 
environmental modeling package that 
integrates a geographical information 
system (GIS) and nation-wide watershed 
data, used for environmental assessment 
and modeling 

CBWM Chesapeake Bay Watershed Model or 
simply Bay Model 

CBP  Chesapeake Bay Program 
HSPF Hydrologic Simulation Program-

FORTRAN is a water quality model 
IQUAL HSPF modules that allow users to model 

the water quality processes occurring on 
impervious areas 

N  Nitrogen, a chemical element 
NCDC U.S. National Climatic Data Center for 

weather data in the United Sates 
NOAA U.S. National Oceanic and Atmospheric 

Administration 
NMP Nutrient Management Plan, a 

documented farm plan 
NPS Non-Point Source, diffuse and 

unregulated pollution sources 
NSE Nash-Sutcliffe Efficiency, a statistical 

data analysis statistic 
P  Phosphorus, a chemical element 
PBIAS Percent bias is a statistical analysis 

metric for data analysis 
PQUAL The simpler empirical HSPF modules 

that allow users to model the water 
quality processes occurring in pervious 
areas 

RE Relative Error, error approximation in 
some data representing a discrepancy 
between an exact value and some 
approximation to it, percentage. 

SWCD Soil and Water Conservation Districts 
TMDL Total Maximum Daily Loads, is a 

program mandated by the Clean Water 
Act, and is a watershed management 
process that integrates watershed 
planning with water quality assessment 
and protection. It is the maximum 
amount of pollution that a waterbody 
can receive and still meet the applicable 
water quality standards 

TN Total N - sum of nitrate-nitrogen (NO3-
N), nitrite-nitrogen (NO2-N), ammonia-
nitrogen (NH3-N) and organically 
bonded nitrogen 

TP Total P - includes the amount of P in 
solution (reactive) and in particulate 
form (adsorbed and organic) 

USDA- NASS United States Department of Agriculture 
– National Agricultural Statistics 
Service (Agricultural Census) 

USEPA United States Environmental Protection 
Agency 

USGS United States Geological Survey 
VADCR Virginia Department of Conservation 

and Recreation 
VADEQ Virginia Department of Environmental 

Quality 
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