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Abstract  In southeast Ohio, Raccoon Creek Watershed (RC) has an extensive mining history resulting in acid 

mine drainage (AMD) and subsequent environmental problems. Modeling of the discharge and chemistry of AMD 

impacted Hewett Fork, a tributary of Raccoon Creek, is the focus of this paper. Discharge measurements are 

collected by the United States Geological Survey (USGS) gage station at the Bolin Mills (BM) station on the main 

stem of RC. This data for the period 2011-2019 has been analyzed to develop a prediction model for BM discharge 

and subsequently use the model to predict flow and water chemistry in Hewett Fork (HF). The Neural Network 

Model using group method of data handling (GMDH) and generalized regression neural network (GRNN) shows a 

variation of prediction models for BM due to parameters such as decay factor in API and ATI, as well as in the 

evapotranspiration input variables of the model. However, the study reveals that the GRNN model for BM is the 

most suitable for BM prediction based on its performance, with an r-value greater than 0.90, and its ease in 

predicting discharge by specifying a data set to be added to the data set for training and calibrating the network. The 

result of the water chemistry model using GMDH, with r values greater than 0.80 for each model, shows the input 

variables have a good capacity to predict chemical concentration/load in the HF stream. This study shows that 

Artificial Neural Network (ANN) modeling can help to model successfully and predict flow and chemical evolution 

of rivers in Ohio and other parts of the world. 
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1. Introduction 

For over 200 years, coal mining has been a major 

economic source in the eastern United States. As a result 

of the rise in a coal mining operation in the eastern region 

which includes Ohio, acid mine drainage (AMD) became 

rampant due to the high sulfide content of coal and 

associated rocks thereby posing severe environmental 

pollution problems for the coal mining communities [1]. 

AMD is a major and widespread environmental pollution 

problem in the Appalachian region. Pennsylvania, Ohio, 

and West Virginia are the states within the Appalachian 

region that are characterized by having series of multiple 

coal layers along their geologic strata [2]. The oxidation of 

sulfide mineral ores is the main source of AMD, which is 

initially exposed to the surrounding environment because 

of intensive mining activities. AMD has a low pH, high 

total dissolved solids (TDS), is net acidic, and normally  

 

 

has elevated concentrations of manganese, sulfate, 

aluminum, and iron [3]. The impact of AMD in nearby 

streams is that the stream water quality is degraded, and 

the stream's biological activity is negatively affected. 

An AMD impacted river found in southeast Ohio is the 

Raccoon Creek watershed, with approximately 9-10 

percent of the total watershed mined [4]. A matter of 

concern in this impacted stream is the movement of 

contaminants and sediments because the precipitation of 

metallic compounds acidifies the stream and also 

increases the sediment load. In order to have a better 

understanding of the movement of contaminants, nutrients, 

and sediments in the stream, it is important to understand 

the flow regime, chemical transport, and also generate 

streamflow predictions. The prediction of streamflow is 

expedient for the planning and management of water 

resources. In a situation where a river basin has a scarce 

record of hydrologic data, which could be as a result of 

them not being gaged or partially gaged, water resource 

engineers and hydrologist depends solely on the modeling  
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of past empirical data to make streamflow predictions. 

Generally, such predictions are useful in remediation 

studies, flood, or drought prediction, and for the 

optimization of hydrologic systems of a basin.  

Most analysis of hydrological systems involves the 

mapping and modeling of non-linear data, which is 

performed by statistical tools such as curve fitting and 

regression. However, in a situation where the underlying 

physical law is not well known or it is too complex, it 

becomes difficult to effectively model the phenomenon 

[5]. Effort has been made in applying computational 

techniques that do not require rule development, thereby 

reducing software complexity; one of such computational 

technique is called neurocomputing, and the network that 

performs this neurocomputation is called Artificial Neural 

Networks (ANN)[5]. A major advantage that ANN has 

over other traditional methods is that the complex nature 

of the underlying process is not required to be described 

explicitly in a mathematical format [6]. ANN is  

therefore described as a universal approximator that can 

successfully learn from examples or past experience 

without explicit physics [7]. ANN models are easily 

developed and can generate satisfactory results especially 

when they are applied to a complex system that is not well 

understood or poorly defined [8]. 

ANN has been applied in hydrology for forecasting in 

hydraulics and environmental prediction [9] water quality 

assessment [10] forecasting streamflow [11,12], modeling 

reservoir operations [13], rainfall-runoff modeling [14]. In 

a broader context, in one of the early applications of ANN 

to streamflow predictions, Kang et al. [15] used a 

combination of autoregressive moving average model 

(AMAM) and ANN using different three-layer design 

architecture for the prediction of hourly and daily 

streamflows in Pyung Chang River basin in Korea. The 

authors concluded that ANNs help predicts streamflows. 

Another study relating to streamflow prediction was 

conducted by Karunanithi et al. [16] at an ungaged site in 

the Huron River, Michigan, with data based on a USGS 

stream gage station located downstream of the sampling 

site. These authors mentioned that ANN has the adaptive 

capability to accommodate historical changes in 

streamflow records. In general, all ANN models can 

produce a better result compared to other types of models 

like linear regression and are better than deterministic 

models. 

In this paper, the discharge and chemistry of Hewett 

Fork (HF), a stream impacted by AMD in Raccoon Creek, 

is investigated based on data collected during the last 9 

years. The objective of this study is to use the ANN model 

to understand and highlight important hydrologic 

parameters that can influence and predict discharge in a 

gaged flow (USGS Bolin Mills) and subsequently used 

those parameters to calibrate flow, and water chemistry in 

the ungaged stream (HF flow). Modeling of flow and 

water chemistry in an AMD-affected stream is needed to 

understand how the effects of change in hydrologic  

 

parameters affect water quality. It is a major step to 

simulate other processes happening in the river and to also 

have a better understanding of the physical environment, 

biological recovery, and water chemistry of the stream. 

The modeling studies are also important in understanding 

stream recovery and making a better future remediation 

plan. For instance, change in stream discharge from 

modeling extreme events can help to know if over-treating 

or undertreating is happening in the treatment process of 

the streams and how all these changes in the treatment 

process affect the quality of stream during extreme events. 

2. Artificial Neural Network 

ANN is a computational system developed by 

individual cells that carry out computational calculations 

which is similar to how the human brain functions [17]. It 

can learn patterns and also use this information to provide 

solutions to problems with nonlinearity and high-level 

complexity [18]. In a typical ANN, each node is arranged 

in a particular order. In a feedforward network, the 

arrangement of nodes generally starts from the first input 

layer and ends at the final output layer [18]. There is also 

the possibility of having several hidden layers in the 

network, with each layer containing one or more nodes 

[19]. Information is passed from the input side to the 

output side. The nodes in a layer are not connected to 

those in the same layer but are only connected to nodes in 

the next layer. Thus, the inputs received from the previous 

layer and the corresponding weight determines the output 

of a node in a layer [20]. In most neural network models, 

the first input variable is received in the first input layer, 

with each input variable containing all quantities that can 

directly or indirectly influence the output [21]. As a result 

of this, the input layer is transparent because it provides 

all the necessary information that the network needs [21]. 

The output layer which consists of predicted values by the 

network is referred to as model output. The network uses a 

trial-and-error procedure to determine the overall hidden 

layers and the number of nodes each hidden layer contains 

[19]. The nodes within each neighboring layer of the 

network are completely attached by connected links. A 

synaptic weight is allocated to each connection link, 

representing the relative strength of the connection of two 

nodes at both ends to predict the relationship between the 

input-output [19]. Figure 1 shows the configuration and 

topology of a three-layer ANN. These kinds of 

feedforward three-layer ANN have been applied to a 

variety of problems, such as pattern classification, 

recalling and storing data, solving constrained 

optimization problems, and grouping similar patterns [22]. 

In this Figure, X represents the input vector that consists 

of several variables that influence the behavior of the 

system while Y represents the output vector that consists 

of the resulting variable that describes the behavior of the 

system. 
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Figure 1. Configuration and topology of ANN [22] 

Figure 2 shows a schematic diagram of a typical jth 

node. Depending on the location of a node in a layer, the 

node‘s input structure is generated from casual system 

variables or the outputs of other nodes [21]. These input 

systems then generate an input vector X= (𝑥1,… 𝑥𝑖…...𝑥𝑛 ) 

[21]. The weight sequence leading to the node generates a 

weight vector W= ( 𝑥1𝑗 ,…  𝑥𝑖𝑗 …... 𝑥𝑛𝑗 ), where 𝑤𝑖𝑗  

represents the weight of the connection from the jth node 

[21]. 

 

Figure 2. Schematic diagram of a typical jth node [22]  

The node‘s output 𝑦𝑗  can be obtained when the function 

f values are computed for vector X and 𝑊𝑗  - 𝑏𝑗  where 𝑏𝑗  is 

called the bias (also known as threshold value) that is 

connected to this node [22]. The operation explained 

above is defined in equation 1. 

  *j j jy W bf X  (1) 

For an output vector Y = (𝑦1, 𝑦2…… 𝑦𝑝 ) generated by 

ANN to be close to the target vector T = (𝑡1, 𝑡2…… 𝑡𝑝), a 

learning process, also called training, is applied to the 

network to find the bias vector V and weight matrices W, 

minimizing error function in the form expressed in 

equation 2 [22] 

 2( )i i

P p

y t  

Where 𝑦𝑖  is the corresponding output of ANN, 𝑡𝑖  
represents the components of output T (the observed 

values), P is the number of patterns trained and p is the 

number of node‘s output [22]. Network training is defined 

as the process by which ANN connection weights are 

adapted through a continuous simulation process by the 

environment in which the network is set [23]. The effect 

variables of the system are the output while the cause 

variable is the inputs. The procedure of the training 

involves optimization and iterative adjustment of 

threshold values and connection weight for each node [22]. 

After the network has been successfully trained, it is 

hoped that the network produces a good and reasonable 

result.  

In this paper, the ANN model was conducted using a 

commercially available simulation package, NeuroShell®2 

[24]. NeuroShell®2 uses the training data to ―learn‖ 

patterns, allowing it to make predictions when new data is 

presented. The ANN network design architecture applied 

in this study is Group Method of Data Handling (GMDH) 

[25] and Generalized Regression Neural Network (GRNN) 

[26] in the NeuroShell®2 program.  

GMDH produces a mathematical formula that is 

expressed as a non-linear polynomial, which relates the 

values of the most significant input variables used in 

predicting the output variable [25]. It uses a link of a 

simple polynomial to build a successive layer. It creates 

this layer by computing regressions of the input variables 

and then proceeds to select the best ones called survivors 

[25]. GMDH is a powerful design module that creates a 

great deal of flexibility in configuring variables that are 

used to train the network. However, the complexity of the 

polynomial, which can include dozens of terms, often 

makes the equation difficult to apply.  

GRNN is more structurally significant when compared 

to other neural network design architecture [27]. It learns 
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very fast using a simple design technique to produce a 

good regression point [26]. It does not make an 

ambiguous model prediction. Furthermore, due to the 

design's toughness and simplicity, it can make a quick 

calibration and verification. With GRNN, you do not get a 

polynomial equation that you can apply later to another 

data set. You have to run the model and add the prediction 

input data to obtain results for the prediction of the 

dependent variable. 

3. Description of Model Variables 

The interaction between the hydrological processes 

involves several meteorological variables such as air 

temperature, precipitation, solar radiation, and 

evapotranspiration [28]. For this modeling study, it is 

important to understand how precipitation, air temperature, 

Antecedent Precipitation Index (API), and evapotranspiration 

affect discharge. With most precipitation falling as rain, it 

is a major connection in the water cycles that determines 

how atmospheric water is delivered to the earth [29]. The 

climatic effect on river discharge is due to temperature 

and precipitation. Generally, precipitation rates are 

significant factors affecting discharge quantity [30]. 

However, the ways such precipitation occurs plays a 

major role in the quantity of this discharge [30]. For 

instance, evapotranspiration and infiltration tend to be 

decreased when heavy (intensive and frequent) rain occurs, 

causing a large amount of water to flow into the stream 

(runoff) [30]. Stream discharge is affected by this type of 

precipitation. The discharge decreases if precipitation 

occurs in the form of snowfalls [31]. In the USA, 

discharge often occurs during the early winter to late 

spring. The reason is that around the period of November 

to April, most precipitation occurs, and evapotranspiration 

is low, falling like rain into the drainage system [32]. 

Furthermore, the decrease in discharge during the summer 

months may not only be attributed to a low precipitation 

rate but may be due to a high rate of evaporation and 

active growth of shoreline vegetation, thereby removing 

water from the ground [33]. 

Temperature is another factor that may affect  

discharge. It plays a significant role in snowmelt and 

evapotranspiration. Depending on the season of the year, 

an increase in air temperature will greatly affect discharge 

[34]. High temperature during the summer tends to 

increase evaporation rates, leading to a reduction of river 

discharge [34]. In the winter season, the warmer period 

may give rise to a faster rate of snowmelt when there is 

snowpack, or it may cause precipitation to take place in 

the form of rain rather than snow [35]. As a result, the 

discharge could increase during winter, especially at the 

end of the season.  

When there are no stream gages in watersheds, then it 

becomes difficult to provide accurate records of daily 

discharge. In such an ungaged watershed, daily discharge 

can be predicted using rainfall-runoff models and 

statistical tools. In watershed management, rainfall-runoff 

modeling is an important tool in streamflow prediction. 

Prediction of peak flows in a watershed is useful in 

restoring channel habitat structures. The use of the 

Antecedent Precipitation Index (API) as a key variable for 

predicting discharge has been proven effective in 

environments with no sufficient data [36]. API was 

originally conceived to show current soil moisture in 

storm volume prediction models [36]. It works on the 

theory that earlier precipitation will have a low influence 

on current streamflow response as compared to recent 

precipitation [36]. The decay factor is used to represent 

the ―memory effect‖ of a watershed by decaying the 

impact of accumulated rainfall for each time. A short-term 

API demonstrates a more recent rainfall intensity that 

governs response to peak flow while a long-term API 

demonstrates seasonal moisture condition [37].  

Evapotranspiration, as a major process in the climatic 

system, links the energy budget, carbon cycle, and 

hydrological cycle together [38]. Factors that may affect 

the rate of evapotranspiration include wind, solar radiation, 

soil moisture, and temperature. With temperature being 

one of the most significant variables affecting discharge, 

the rate of transpiration goes up as air temperature 

increases [39]. This increased temperature may cause the 

stomata in the plant cell to open, thereby releasing water 

to the atmosphere whereas the opening closes when the 

temperature is colder [40]. 

In this paper, the model variables applied to predict 

discharge and stream chemistry are temperature  

°C, precipitation (inch), API (inch), ATI (°C), and 

evapotranspiration (mm/day). 

4. Site Description and Geologic Setting 

4.1. Site Description 

The Raccoon Creek watershed (RC) covers about 1770 

square kilometer and is also about 180 km long [41]. RC 

is approximately 75.5% forested and with a gradient of 

3.2ft per mile. Before the Surface Mine Control and 

Reclamation Act in 1977, both underground and surface 

coal mine impacts were neglected within the watershed 

[41]. In recent years, several organizations have tried to 

remediate the AMD pollution produced from these mines, 

the Raccoon Creek partnership in conjunction with many 

partnering organizations has been working on remediating 

AMD and restoring the watershed to its pre-mining state 

[42]. HF watershed (a sub-watershed of RC) is located in 

Ohio within Athens and Vinton County (Figure 3a). The 

reason why we selected this stream for this modeling is 

because it is the most studied stream in SE Ohio. 

Discharge and chemistry have been investigated frequently in 

this stream but not in a continuous long-term manner. 

However, there is a USGS station in the main stem of 

Raccoon Creek, the Bolin Mills (BM) gage station. The 

discharge measurement of the USGS BM gage station is 

of interest for this paper because it can be used to 

determine the discharge at HF if the drainage areas of the 

different sampling stations at HF are known. HF is the 

fourth largest tributary to RC [41]. HF‘s main stem has a 

length of about 15.4 miles and has a drainage area of 

40.51 square miles [41]. RC has a stream length of about 

108 miles. It drains an approximate area of 683.5 square 

miles [41]. The topography of RC is made up of a narrow 

ravine, narrow stream valleys, attenuated ridges, and steep 

hillsides which tend to constrain the stream floodplains [43]. 
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Figure 3. a: Map of RC watershed, showing HF subwatershed. The blue circle is the BM gage station and black circle is location of doser [41];  

b: HF sampling points and biologic recovery zones [41]  

The major source of AMD that enters the HF watershed 

is from two deep mine portals of mine complex AS-14 in 

Carbondale, Ohio [41]. In the 1980s, Carbondale  

mine seeps were made a priority for treatment by the  

Ohio Department of Natural Resources Division of  

Mineral Resource Management [4]. As Carbondale Seeps 

remained a major remediation priority, an Aquifix  

lime-doser was installed in 2004 and the purpose of the 

doser is to add calcium oxide to the stream to neutralize 

the AMD. After the installation of the doser, studies 

conducted by DeRose [44] and Kruse et al. [45], reveal 

that HF stream had significant improvements in pH, 

alkalinity, fish, and macroinvertebrate communities. On 

this note, the HF watershed is divided into three biologic 

recovery zones based on aquatic health (Figure 3b), and 

they are the impaired zone, transition zone, and improved 

zone [41]. The impaired zone is characterized to have poor 

biological quality because of the severe impact of AMD 

and the addition of heavy alkaline from the doser. The 

fishes and macroinvertebrates began showing improvements 

in the transition zone while the improved zone, which is at 

the confluence of HF and RC, can sustain biological life 

[41]. 

4.2. Geologic Setting 

HF subwatershed lies in the unglaciated portion of Ohio. 

The bedrock of the watershed is made up of sedimentary 

rock from the Pennsylvanian and Mississippian periods 

[46]. The Mississippian is made up of the Logan and 

Cuyahoga rock members which include shale, conglomerate, 

and sandstone [47]. The Allegheny Formation includes 

coal, sandstone, shale, and some limestone formed during 

the Pennsylvanian [47]. Throughout the state of Ohio, the 

Allegheny Formation is a prime coal resource that consists 

of three important thick coal beds that are rich in sulphides 

[48]. Lower Kittanning No. 5, the Clarion No. 4a, the 

Middle Kittanning No. 6 are the coal seams of interest in 

southeast Ohio, and they are the coal seams that are 

mineable in Hewett Fork [48]. The topography of the RC 

watershed is made up of a narrow ravine, narrow stream 

valleys, attenuated ridges, and steep hillsides which tend 

to constrain the stream floodplains [43]. Soil erosion 

occurs in the watershed because of the steep hillsides 

which increase the stream sedimentation, thereby 

increasing the stream sediment load in addition to any 

AMD pollution in the stream. Clay-rich soils are the type 

of Soil in southeast Ohio. The impact of Clay type soils is 

significant on the infiltration capacity, lower and upper 

zone nominal soil storage. When these clay particles 

become full of water, they tend to swell and act as an 

impermeable layer[49]. Land types also affect hydrology 

calibration. Forested land has a lot of evapotranspiration 

and interception during the growing season while 

agricultural land uses have varying evapotranspiration, 

monthly values for interflow, interception, and infiltration. 

Depending on the time of the year, agricultural land use 

can have a changing infiltration parameter. The parameter 

for non-vegetated land use remains constant all year due 

to little or no change in the characteristics of the land use 

[50]. The watershed area to the BM gage point consists 

primarily of forest and agriculture. 

5. Methodology 

ANN modeling enabled us to determine the impact  

of variations in parameters (e.g., API, precipitation, air 
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temperature, and evapotranspiration) and how changes to 

these parameters affect the modeling of flow in BM and 

HF and chemical transport in HF. 

5.1. Data Gathering for Flow Model in BM 

Discharge measurements collected by the USGS  

gage station at BM station were extracted from the  

USGS National Water Information system (NWIS) 

www.waterdata.usgs.gov/nwis. Precipitation and daily air 

temperature data for the 9 years study period were 

retrieved from Scalia Laboratory for Atmospheric 

Analysis (SLAA) at Ohio University. Antecedent 

precipitation index (API) for the study period was 

calculated using the equation 3 and 4 

  d d 1 dAPI K API P   (3) 

 2
d d d 1 d 2API P KP K P     (4) 

Where 𝐴𝑃𝐼𝑑 = Antecedent Precipitation index for any 

day, K = Decay factor (< 1) and 𝑃𝑑  = Precipitation for day 

d.  

In order to include a longer impact of temperature in the 

river discharge, a new concept similar to API is introduced 

in this paper and it is called antecedent temperature index 

(ATI). The ATI used in this study was calculated using 

Equations 5 and 6. 

  t 1 dK ATI TempATI    (5) 

 2
d d d 1 d 2ATI P KT K T     (6) 

Where ATI is the antecedent temperature index of the day, 

ATIt−1 is the antecedent temperature of the previous day 

and Tempd  is the temperature of the day. 

Potential evapotranspiration was calculated using both 

Blaney-Criddle Method and Hargreaves Method. The 

Blaney-Criddle [51] process of estimating potential 

evapotranspiration (ET) has been used extensively 

especially in the western USA [52]. The Blaney-Criddle 

equation used for the calculation is expressed in equation 

7: 

  0.46 8.13aET kp T   (7) 

Where 𝑇𝑎  = Daily mean temperature in °C, ET=potential 

evapotranspiration (mm/day), p= percentage of the total 

daytime hour, and k=monthly consumptive coefficient.  

ET calculated using Hargreaves [53] equation is 

expressed in equation 8: 

  1/2 17.8a aET aR TD T   (8) 

Where TD = difference in the maximum and minimum 

daily temperature (°C), a = 0.0023 and Ra= extraterrestrial 

radiation in mm/day.  

5.2. Data Gathering for Flow and Chemical 

Model for HF 

Discharge data between 2011-2019 for HF sampling 

points HF010, HF039, HF060, HF090, HF137, HF190 

was extracted from www.watersheddata.com and previous 

work in HF from Mckay [54]. This web application, 

which is a product of Ohio University Voinovich School 

of Leadership and Public Affairs, is an important source of 

water quality data in Ohio. The chemical data available in 

Hewett fork includes pH lab, acidity, ORP, alkalinity, 

TDS, sulfate, total Ca, total Na, total K, total Fe, total Mn, 

total Al, total Cl, and hardness for sampling sites HF010, 

HF039, HF060, HF090, HF095, HF131, HF137, and 

HF190. See Figure 3b for the location of sampling points 

in HF. All the data for this chemical parameter for the 9-

year study period at each sample site were also extracted 

from www.watersheddata.com. However, it should be 

noted that the chemical and discharge data for HF are not 

continuous; the parameters have been determined and 

reported only a few times during the year while in BM, 

there is continuous flow measurements at small time 

intervals but reported every hour by USGS. 

5.3. ANN Model Development for Flow in BM 

ANN was used in this study to show how some 

hydrological parameters influence discharge in BM. BM 

flow was modeled in three approaches. The first approach 

involves modeling using GMDH, with BM discharge as 

the output variable while the input variables are 

precipitation, API, temperature, separated values of 

temperature, and potential evapotranspiration (ET). For 

flow in BM, a training pattern is defined. This represents 

the total data inputs into the network, with each set 

containing data for the input and output variable for the 

study period. NeuroShell®2 then calibrates these variables 

using GMDH. The main concept behind GMDH is that it 

builds a polynomial model function that would behave in 

a way that the predicted value would be close as much as 

possible to the actual value, making it easier for users to 

be able to make a better prediction using a polynomial 

formula that the user is familiar with.  

In the second approach, the Antecedent Temperature 

Index (ATI) is introduced. The use of ATI is a more 

simplified and logical way of expressing previous 

temperature values as one input variable, as opposed to 

separated values of temperature where more than one 

input variable is used, depending on the number of days 

considered. In this approach, GMDH is the network 

design used for the model, with BM discharge as the 

output variable while ATI, API, precipitation, temperature, 

and ET are computed as input variables. A similar 

procedure for the GMDH model used in the first approach 

is also employed in the second approach. 

In the third approach, the ANN model was carried out 

using GRNN. In GRNN, the program extracts a test set 

and production set from the training pattern. GRNN was 

selected because it could provide a lower error than 

GMDH. The test set helps to prevent the network  

from overtraining the data so that it can generalize well  

on a new set of data. The network uses a production  

set to test the result of the network model with data  

that the network has not processed before. A summary of 

the model arrangement for flow in BM is presented in 

Table 1. 
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Table 1. Summary for the model using GMDH and GRNN for BM flow 

Model 

Network 

ANN 

Design 
Output Variable Input variable 

BM 1 GMDH BM Discharge API with k = 0.95, precipitation, Tempt  , Tempt−1 to Tempt−9  

BM 2 GMDH BM Discharge Precipitation, API with the best decay factor, Tempt  , Tempt−1 to Tempt−9  

BM 3 GMDH BM Discharge 
Precipitation, API with the best decay factor, Tempt  , Tempt−1 to Tempt−9 , ET was calculated using 

Hargreaves Method. 

BM 4 GMDH BM Discharge 
Precipitation, API with the best decay factor, Tempt  , Tempt−1 to Tempt−9 , and ET using Blaney-Criddle 

equation with the best decay factor 

BM 5 GMDH BM discharge 
Precipitation, API with the best decay factor, Tempt  , Tempt−1 to Tempt−150 , Blaney Criddle equation of 

ET with the best decay factor. 

BM 6 GMDH BM Discharge 
API with the best decay factor, ATI, precipitation, Tempt  and ET using Blaney Criddle equation with the 

best decay factor 

BM 7 GRNN BM Discharge 
API with the best decay factor, ATI, Precipitation, Tempt  and ET using Blaney Criddle equation with the 

best decay factor 

 

5.4. ANN Development for Flow in HF 

Hydrologic modeling can be used to predict discharge 

in ungaged streams. In this scenario, a hydrologically 

similar gaged stream close to the ungaged stream is used 

to calibrate the model. The model parameters are adjusted 

in a way that reflects the physical changes between the 

ungaged watershed and calibration watershed. In this 

paper, discharge measurements collected by the USGS 

gage station at BM station are used to calibrate the flow in 

the HF stream, which is near-by to the BM station. 

Discharge data for HF010, HF039, HF060, HF090, HF137, 

HF190, and their river mile and drainage area were the 

parameters extracted for the HF stream. For dates where 

discharge data are available for each HF site between 

2011-2019, BM discharge, temperature, ATI, API, and 

precipitation were also extracted for those dates since 

there is continuous data for them. ANN using GMDH was 

used for the modeling, with HF discharge as output 

variables while BM discharge, temperature, ATI, API, 

river mile, drainage area, and precipitation are input 

variables. In the end, a long streamflow record can be 

created from the polynomial equation generated by  

the network. The polynomial equation represents the 

formula that can help predict the discharge at HF stream 

(an ungaged AMD stream), provided all other input 

parameters are available.  

5.5. ANN Development for  

HF Chemical Model 

The first step was to extract chemical data such as 

acidity, aluminum (Al), potassium (K), iron (Fe), 

alkalinity, magnesium (Mg), calcium (Ca), and manganese 

(Mn), available for each HF site. The extraction is divided 

into two stages. The first stage is to extract chemical data 

for dates where discharge data is available in HF010, 

HF039, HF090, and HF190. The second stage is to extract 

chemical data for dates where chemical data is collected 

but the discharge was not measured. This stage involves 

introducing new HF sites such as HF060, HF095, and 

HF137, where discharge data was not measured but has 

abundant chemical data. The polynomial equation 

(formula) generated for the flow in the HF stream is then 

used to predict the discharge (simulated discharge) for 

dates where there is abundant chemical data, but discharge 

data is not available. The mathematical formula was used 

to predict discharge in 36 additional dates where chemical 

data is abundant, but discharge is not measured, which 

gives a total of 96 data points (both measured and 

simulated discharge) that was considered in this study. 

The third stage is to gather all data in the first and second 

stages together i.e all chemical data for each site, HF 

discharge (both measured and simulated discharge), 

precipitation, API, BM discharge, temperature, ATI, 

drainage area, and river mile. ANN using GMDH was 

then applied, with each chemical parameter (chemical 

concentration and load) as output variable while BM 

discharge, precipitation, API, temp, ATI, river mile, and 

drainage area were computed as input variables. The 

chemical load in kg/day was calculated using the 

expression in equation 9: 

 

 
 

3Discharge ft / s *28.32l / s

 * chemical concentration mg / l
*86.4kg / day

1000

 
 
 
 

 (9) 

Upon completion of the ANN model run, a graph 

of %error for each chemical concentration and load vs 

discharge was plotted. As a result of the findings from this 

error plot, the model was divided into two categories 

based on HF discharge. The % model error is calculated 

using the expression in equation 10. 

 
Actual variable Predicted variable

*100
Actual variable


 (10) 

5.6. Model Performance Evaluation 

Models were evaluated using R squared (Coefficient of 

determination), Root means square error (RMSE), and 

correlation coefficient (r-value), which was generated in 

the Neuroshell2 program. Furthermore, after the training 

and testing of the neural network models have been 

completed, the model with the best performance was 

validated by comparing the actual value to the predicted 

value by the network. 

6. Results and Discussion 

6.1. Modeling of Flow in BM 

In the first approach to modeling BM discharge, BM 

discharge was computed as output variable while API with 

a decay factor of 0.95, precipitation, temperature, Tempt, 
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Tempt−1  Tempt−2 , Tempt−3 , Tempt−4 , Tempt−5 , 

Tempt−6 , Tempt−7 , Tempt−8 , and Tempt−9  was 

computed as input variables (model BM 1). Studies 

conducted by Raju et al. [19] have also used separated 

values of temperature as predictor variables for the simulation 

of spring discharge and their result show a good model 

output. Initially, a constant year-round decay constant (k) 

of 0.95 was used in the API calculation for this paper based 

on the recommendation of Hill et al. [55]. Lindsay et al. 

[56] stated that decay constant (k) must not be greater than 

one. The statistical performance of the model output with 

a correlation coefficient of 0.67 and R squared of 0.45, 

reveals that all input variables are the most significant 

variables influencing BM discharge. The network identifies 

the most significant variables to be the input variable that 

is used in the winning model while the less significant 

variables are input variables that are used in any of the 

survivors but not in the winning model. As a result of the 

output for model BM1, all the input variables were retained 

in other network model runs. In a regression model, R 

squared shows the variance in proportion for the dependent 

variable (output) that can be explained by the independent 

variable (input). This means that the model input can 

explain about 45% of the observed variation. With the  

modeled input variables in model BM1, the plot of observed 

discharge and modeled discharge (hydrograph) shows an 

underestimation of peak discharge (Figure 4), with the 

network unable to match modeled discharge with 

observed peak discharge. 

It was necessary to adjust the decay factor used in API 

calculation since the selected decay factor of k = 0.95 used 

in model BM1 did not give the best result. Decay factor (k) 

is an important parameter in the API calculation. For 

instance, when rainfall does not occur, the catchment 

wetness measured by API gradually decreases each day by 

the decay factor (k) and increases again when rainfall 

occurs. This means that the decay factor depends on the 

season, climate, soil condition, and location. In southeast 

Ohio, the soils are typically rich in clay. The clay soils 

tend to swell and expand when filled with water, acting as 

an impermeable layer [49]. Based on this factor, the decay 

constant used in the API calculation was decreased and 

ANN was applied for each decrease, with the aim of using 

the best decay factor that can best describe the area. 

Studies conducted by Beschta [36] on peak-flow 

estimation using API model in a tropical environment, 

stated that catchment that is relatively small with shallow 

soils and steep topography tends to have a higher decay 

factor than larger catchment with deep soil and gentle 

terrain. The author also adjusted the decay factor based on 

hydrograph analysis, to stimulate peak flow. The decay 

factor in this paper was lowered in the following order: 

0.90, 0.85, 0.80, 0.75, 0.70, 0.65, 0.60, 0.55, and 0.50. 

ANN using GMDH was applied, with BM discharge as 

output variable while precipitation, Tempt , Tempt−1  to 

Tempt−9 , and AP1 for each lowered decay factor is 

computed as input variables. The model was trained until 

the best result is found (model BM2). The model result 

shows that the r-value increases until it gets to its peak at 

k=0.75 and gradually decreases. This means that the  

decay factor of (k=0.75) gave the best result (Figure 5). It 

can be observed that the r-value (0.67) in model BM1 

increased by 16% (to r=0.78) when the decay factor was 

lowered in model BM 2. The hydrograph of model BM2 also 

improved, compared to the wide range of underestimation 

of peak BM discharge observed in model BM1. 

As the r values for the previous simulations were still 

low, the role of the potential evapotranspiration (ET) in 

the discharge was investigated. ET calculated using the 

Hargreaves method and Blaney-Criddle method were 

computed as additional input variables in model BM3 and 

model BM4, respectively. It was important to include ET 

as additional input variables to know how it influences 

BM discharge and to also improve the network model 

result. Model BM3 is computed with BM discharge as 

output variable while precipitation, API with best decay 

factor (k=0.75), Tempt , Tempt−1 Tempt−9 , and ET using 

the Hargreaves method is computed as input variables. 

The results show that ET using the Hargreaves method in 

model BM3 did not improve the result. This is evident in 

the model output with an r-value of 0.78, which is the 

same as model BM2 with the best decay factor. In model 

BM4, BM discharge is computed using the Blaney-

Criddle equation to calculate ET. Consumptive-use crop 

coefficient (k) in the Blaney-Criddle ET equation depends 

solely on location, season, and vegetation type. Although 

many researchers like Xu and Singh [57] have mentioned 

measured k values for important crops at different 

locations, However, such measurements are hard to make 

and may also be subjected to errors due to the various 

diverse condition under which the studies were 

investigated [58]. Not only does climate varies, but also 

soils, availability of water supply to crop, the method 

applied for consumptive use measurement, crop yield, and 

other factors varies from place to place. Thus, a variation 

in the k value can be expected. In addition, k values vary 

from 0.5 – 1.2 for orange trees and natural dense 

vegetation [51]. Based on this, the k value used in this 

study for the Blaney-Criddle ET equation was adjusted 

and ANN is applied for each adjustment until the best 

result is found. It can be seen that the model run using a  

k value of 0.91 gave the highest r-value of 0.798, 

thereafter, the r-value sharply declines and remain steady 

afterward (Figure 6). Since ET using the Blaney Criddle 

method improved the result better than the Hargreaves 

method, it was selected for further model runs. 

Since the r-value obtained for model BM4 is 0.798, 

there was a need to improve the result to get a higher r-

value. To achieve this, more separated values of 

temperature up to 150 days were computed as additional 

input variables, and then the model is trained (model 

BM5). For this simulation, BM discharge is computed as 

output variable while API with best decay factor, 

precipitation, Blaney-Criddle ET with best k value (0.91), 

and separated values of temperature are computed as input 

variables. The result shows that as more temperature 

values are added as input variables, the r-value improves. 

The reason for this model improvement due to more 

temperature variables is because BM discharge has a 

component of baseflow, and air temperature has an impact 

on baseflow because it is the temperature of recharge in 

the groundwater system and then into the river. Although 

GMDH generates a mathematical formula for prediction, 

the formula generated in this simulation is too long due to 

the large number of input variables, making it inefficient 

and difficult to use. 
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Figure 4. Model BM1 output using separated values of temperature (Tempt-1 to Tempt-9) and API with k = 0.95 

 

Figure 5. r values for all lowered decay factor 

 

Figure 6. r-value for each variation in k values of Blaney Criddle ET method 

In the second approach to modeling BM (model BM6), 

the decay constant in both API and ATI is varied, and then 

trained until the best result is found (trial by error). An 

extraction from several trials by error model run based on 

the variation of decay factor in API and ATI shows that 

API with a decay factor of 0.73 and ATI with a decay 

factor of 0.90 recorded the best result, with an r-value 

greater than 0.74 (Figure 7). However, the r-value is lower 

than the best model in the first approach using separated 

values of temperature. Furthermore, the hydrograph shows 

a consistent underestimation of BM discharge across all 

time intervals. 
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Figure 7. r values of the model run using variation in decay factor of API and ATI 

 

Figure 8. Model BM7 using GRNN, with the introduction of ATI 

Table 2. Summary of model performance for all model in BM 

Model no R squared r value RMSE (cfs) RMSE (Min-Max) (cfs) 

BM 7 0.81 0.90 203 2.85-3859 

 

The third approach (model BM7) is to use input and 

output variables in the second approach but with a 

different ANN design architecture called GRNN. The 

model result shows an R squared and r-value of 0.81 and 

0.90, respectively. Although only a few underestimations 

are observed in the hydrograph (Figure 8), it still  

shows a better match between the modeled and observed 

discharge, compared to the hydrograph in the second 

approach where a wide range of underestimation was 

observed. In general, the network using GRNN with the 

ATI method gives a more useful and efficient approach  

in predicting BM discharge. Although in GRNN, a 

mathematical formula is not produced unlike GMDH, it is 

possible to estimate or predict new discharges with the 

patterns established by the training and test sets and 

running the model again with the prediction set to 

determine unknown discharges. 

RMSE, correlation coefficient (r), and R squared value 

were the performance measures that were selected for 

evaluation of all ANN models in BM. Of all the three 

approaches, model BM5 had the best performance based 

on the r-value and RMSE, however, the long mathematical 

formula generated from this simulation due to the large 

input variables has made it complicated to use in 

predicting BM discharge. Furthermore, the performance of 

models BM5 and BM7 was better than model BM6. For 

this paper, model BM 7 is preferred because of its 

reasonable and acceptable r value and RMSE, and its ease 

in predicting discharge by specifying a new discharge to 

be predicted in the training and test set pattern icon in the 

NeuroShell®2 program. The summary of performance for 

model BM7 is presented in Table 2. When the RMSE of 

the BM model is compared with the minimum and 

maximum range of values for the model output, the 

RMSE value for the model is acceptable. 

6.2. Modeling of HF Flow 

Modeling of BM discharge was conducted to identify 

the parameters influencing the discharge and to also be 
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able to generate a prediction model using these parameters. 

Based on the overall model performance in BM, the input 

variables selected for calibrating flow in HF are API, BM 

discharge, precipitation, temperature, ATI, drainage area, 

and river mile. ANN using GMDH was applied for 

modeling of HF flow, with measured BM discharge, API, 

ATI, precipitation, temperature, HF drainage area,  

and HF river mile as input variables while HF discharge  

is computed as an output variable. The statistical 

performance of the model shows an r-value, R squared 

value, and RMSE of 0.97, 0.95, and 4.2cfs, respectively 

which indicates a good model output (Table 3). A plot of 

observed discharge (HF discharge) and modeled discharge 

(Figure 9) shows that the modeled discharge matches the 

actual peak discharge in HF010, HF060, and HF090 while 

an underestimation of discharge is observed from low 

discharge in HF090. Considering the values of the 

statistical performance of the model, it is seen from these 

model plots that the actual and modeled discharge have a 

reasonably good match. Based on the input variables, the 

model identifies all the input variables to be the most 

significant variables for predicting HF discharge. The 

network used all the input variables to generate the 

mathematical formula used in predicting HF discharge. 

Since there is continuous data for BM discharge, and 

precipitation, ATI, temperature, river mile, and drainage 

area of each HF site is known, the mathematical formula 

in Table 3 was used to simulate discharge for dates where 

discharge was not measured but chemical data is available, 

thereby creating ample data for modeling water chemistry 

in HF stream. To use this mathematical formula to predict 

HF discharge, the legends of the formula must be 

calculated, for instance in Table 3, (X1-X7) is calculated 

using the values of each input variable. These calculated 

values are then substituted in the mathematical formula to 

get the ―Y‖ value. Since the Y value in the mathematical 

formula is known, it is then substituted for the ―Y‖ value 

in the legend, to calculate HF discharge. 

Table 3. Model HF output parameter 

Network type GMDH 

Number of Output 1 

Number of Inputs 7 

Layers Constructed 4 

Best criterion value 0.01 

Formula 
Y=0.31*X4-0.43*X5+0.29*X1+0.4*X3-0.58*X7-0.55*X1^2-0.48*X3^2+0.19*X1^3-0.35*X3^3+0.6*X1*X3-

0.5*X1*X7-6.9E-002*X3*X7+0.6*X5^2+0.15*X5^3-0.63*X4*X5-4.4E-002*X5*X6 

Legends X1=2.*(BM Discharge-0.24)/1219.76-1. 

 X2=2.*Precipitation/0.27-1. 

 X3=2.*(API)/0.92-1. 

 X4=2.*(temperature+0.47)/30.13-1. 

 X5=2.*(ATI+1.67)/54.31-1. 

 X6=2.*(Drainage area-8.3)/32.-1. 

 X7=2.*(river mile-0.9)/12.5-1. 

 Y=2.*(HF Discharge-0.27)/117.23-1. 

R squared 0.95 

r value 0.97 

RMSE 4.20 

Most Significant variable BM discharge, API, Precipitation, ATI, Temperature, drainage area, and river mile 

 

Figure 9. Model for HF flow using GMDH 
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6.3. Modeling of Chemical Transport in HF 

Stream 

ANN using GMDH is used to model chemical transport 

in HF. For each chemical concentration model, the plot of 

actual concentration and predicted concentration shows an 

underestimation in some HF sites, where the observed 

concentration reaches a peak faster than the modeled 

concentration, for instance, in the acidity concentration 

model, underestimation of acidity concentration is 

observed in HF039, HF095, and HF137 (Figure 10A) 

while in acidity load (Figure 10B), the model plot shows a 

good match between the modeled acidity load and 

observed acidity load in almost all HF sites. This similar 

match in the acidity model, where the load model 

displayed a better model match than the concentration 

model, is also observed with all other chemical models 

(Figure 11C-11F & Figure 11A-11F). However, the 

performance of all the models varies and is discussed in 

section 6.3.1.  

Output from the ANN models for river chemistry in HF 

shows that, of all the input variables, HF discharge is the 

only variable that remains consistent as the most 

significant variable for all chemical concentration and 

load models, highlighting its influence in all the models. 

BM discharge is observed to only be less significant in the 

Mn concentration model while it is most significant for all 

other models. ATI is less significant in acidity load and 

alkalinity load but remains most significant in all other 

models. Furthermore, API is most significant in all models 

except for sulfate concentration and sulfate load where it 

is observed to be less significant. 

 

Figure 10. Model of chemical concentration/load for acidity, alkalinity, and Ca 
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Figure 11. Model of chemical concentration/load for Mg, sulfate, and K 

6.3.1. Model Performance for Chemical Concentration 
and Load Model in HF 

Table 4 shows the summary of model performance for 

overall chemical concentration and load model in HF. The 

data for all chemical concentration models are indicated in 

red while the chemical load model is indicated in blue. For 

chemical concentration model, the r-value for Acidity, Al, 

Mn, Sulfate, Ca, Mg, K, Fe and Alkalinity are 0.78, 0.86, 

0.87, 0.88, 0.87, 0.90, 0.88, 0.91, and 0.86, respectively, 

with highest r value (0.91) recorded in model for Fe 

concentration. RMSE for all the total datasets for chemical 

concentration range from 0.24 mg/l to 54.06 mg/l. Aluminum 

concentration with the lowest RMSE (0.24  mg/l ) is 

identified as the model with the best performance. For the 

chemical load model, the r-value for all models was 

greater than 0.90, and the RMSE ranges from 4.60 kg/day 

to 878.3 0 kg/day . Mn load, with the lowest RMSE 

(4.60 kg/day)  and r-value (0.96) demonstrates the best 

performance. The sulfate model had the highest RMSE in 

both the concentration model (54.06mg/l) and load model 

(878.30 kg/day), while a similar high RMSE trend also 

occurred in both Ca concentrations and load, and 

alkalinity concentration and load. When the RMSE of 

each chemical model is compared with the minimum and 

maximum range of values for the model output, the 

RMSE values for the models are acceptable. 
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Although the RMSE recorded in the overall model are 

acceptable, however, high RMSE values were still 

recorded in some chemical concentration models like 

sulfate concentration with RMSE of 54.06mg/l. Similarly, 

elevated values of RMSE were recorded for sulfate load 

(878 kg/day), calcium load (249.97 kg/day), and 

Alkalinity load (201.40 kg/day). To improve the model, it 

is important to have a lower RMSE because the lower the 

RMSE, the better the model prediction. To achieve this, it 

was necessary to examine the %error for each model run. 

A graph of %error vs HF discharge was plotted for each 

chemical concentration/load. HF discharge is selected 

because it is the only most significant variable that 

influences the prediction of both chemical concentration 

and load. Findings from the %error graph plot show that 

higher errors were dominated in HF discharge less than 

12cfs while lower errors are dominated in discharge 

greater than 12cfs. Based on this evidence, the model was 

divided into two i.e (HF discharge less than 12cfs and HF 

discharge greater than 12cfs). The extraction was done in 

such a way that the entire data containing all input 

variables (HF discharge, BM discharge, Prep., API, temp, 

ATI, river mile, and drainage area) and output variables 

(chemical load and concentration) was organized from 

smallest to highest HF discharge and then separated into 

two data sets, one for discharge < 12cfs and the other for 

Hf discharge > 12cfs and ANN using GMDH was applied 

for each data set.  

The statistical performance of the HF division model 

category for chemical concentration (Table 5) and load 

model (Table 6) shows the RMSE for each HF discharge 

division improved, especially in the HF discharge >12cfs 

category for chemical concentration model and in HF 

discharge <12cfs category for chemical load model, 

compared to when the model was performed without 

division. In general, based on the performance of all these 

models, the input variables have a good capacity to predict 

chemical concentration/load in the HF stream. 

Table 4. Performance of overall chemical concentration and load  

Chemical parameter r value 

Chemical concentration model 

r value 

Chemical load 

RMSE 

(mg/l) 

RMSE 

(Min-Max) 

(cfs) 

RMSE 

(kg/day) 

RMSE 

(Min-Max) 

(cfs) 

Acidity 0.78 0.97 2.60-10.40 0.98 37.66 0.11-1146 

Aluminum (AL) 0.86 0.24 0.12-1.57 0.95 10.12 10.62-186.09 

Manganese (Mn) 0.87 0.77 0.11-2.08 0.96 4.60 4.46-71.65 

Sulfate 0.88 54.06 34.78-526.78 0.95 878.30 147.07-13454.57 

Calcium (Ca) 0.87 17.19 10.01-160.46 0.96 249.97 58.38 - 4461.70 

Magnesium (Mg) 0.90 2.19 4.57-24.98 0.96 43.99 4.06 -1388.92 

Potassium (K) 0.88 0.39 1.0-3.75 0.99 9.55 2.0-335.53 

Iron (Fe) 0.91 0.48 0.11-4.96 0.97 16.07 26.7-293.01 

Alkalinity 0.86 6.18 4.30-49.70 0.98 201.40 101.1-7188 

Table 5. Summary of chemical concentration model for HF discharge division 

Chemical parameter 
RMSE (Overall 

Concentration) 

RMSE for HF 

discharge<12cfs 
r value 

RMSE for HF 

discharge>12cfs 
r value 

Acidity 0.97 0.93 0.80 0.29 0.97 

Aluminum (AL) 0.24 0.16 0.94 0.14 0.93 

Manganese (Mn) 0.23 0.25 0.88 0.055 0.95 

Magnesium (Mg) 2.19 2.11 0.89 0.44 0.96 

Potassium(K) 0.39 0.35 0.88 0.042 0.99 

Iron (Fe) 0.48 0.36 0.95 0.20 0.97 

Sulfate 54.06 47.52 0.91 8.36 0.95 

Calcium(Ca) 17.19 17.71 0.87 1.22 0.98 

Alkalinity 6.18 4.60 0.94 1.41 0.98 

Table 6. Summary of chemical load model for HF discharge division 

Chemical parameter RMSE (Overall Concentration) RMSE for HF discharge<12cfs r value RMSE for HF discharge>12cfs r value 

Acidity 37.66 10.83 0.97 39.47 0.99 

Aluminum (AL) 10.12 2.94 0.96 11.45 0.96 

Manganese (Mn) 4.60 2.24 0.95 3.27 0.98 

Magnesium (Mg) 43.99 26.23 0.96 41.89 0.99 

Potassium (K) 9.55 3.95 0.97 10.33 0.99 

Iron (Fe) 16.07 5.75 0.98 9.92 0.99 

Sulfate 878.30 511.02 0.94 646.42 0.97 

Calcium (Ca) 249.97 130.14 0.95 117.52 0.99 

Alkalinity 201.40 66.63 0.97 198.37 0.99 
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7. Conclusions 

The study aimed to investigate the potential of ANN 

models for simulating the hydrologic behavior in the 

Raccoon Creek watershed (with a BM gaged station) and 

subsequently use the model parameters for BM to predict 

flow and chemistry of Hewett Fork subwatershed, a 

tributary of raccoon creek watershed, southeast Ohio. In 

this regard, we set up an ANN model (using NeuroShell®2) 

to generate streamflow prediction of the watershed. One 

major challenge in the ANN model for BM is the consistent 

underestimation of discharge, where the network is unable 

to match modeled discharge with observed peak discharge, 

hence, the reason why BM flow is modeled in three 

approaches. The disadvantage of the GMDH model in the 

first approach is the long mathematical formula generated 

due to the large input variable considered, making it 

difficult to predict BM flow. However, the introduction of 

ATI in the GRNN model is considered more efficient due 

to its performance compared to GMDH, where a wide 

range of underestimation of discharge is observed. Also, 

the results obtained with the GRNN model in the third 

approach are better than GMDH models. In general, 

findings from the modeling of BM flow show that API has 

a strong influence on the prediction of BM flow. This is 

evident in the model improvement observed after the 

decay factor for API was decreased. The lower value for 

the decay factor (0.73) for API can be understood if we 

consider the geology of the area. The soils are rich in clays 

and that makes the overland flow greater and the decay of 

the effect of precipitation can last longer due to more 

water reaching the stream from the far regions of the 

watershed. Furthermore, air temperature also plays a 

major role in BM flow prediction. This is because BM 

discharge has a component of baseflow, and air 

temperature has an impact on baseflow and overland flow 

because it is the temperature of recharge in the 

groundwater system and then into the river. The GRNN 

model has proven more effective in modeling discharge at 

BM because it gives a high r-value (0.90) without the 

complexity of a very large equation. Prediction input data 

can be added to the model to get the expected discharge. 

The GMDH model for the prediction of HF flow using the 

model parameter for BM flow shows a good model output 

with an r-value of 0.97 and an RMSE of 4.18cfs. It should 

be noted that HF discharge is not measured often and this 

modeling approach for the discharge helps to create more 

flow data for modeling of water chemistry. Since a 

continuous flow record is not documented for HF flow, 

this mathematical formula will be useful for water 

resource practitioners and researchers to create a 

continuous flow estimate for HF flow (an ungaged AMD 

stream). The result of the water chemistry model using 

GMDH, with r values greater than 0.80 for each model, 

shows that the input variables have a good capacity to 

predict chemical concentration/load in the HF stream. It 

was observed that HF discharge is the only variable that 

remains consistent as the most significant variable for all 

chemical concentration and load models, highlighting its 

influence in all the models. Furthermore, when the overall 

chemical concentration and load model was divided based 

on HF discharge, the statistical performance of the HF 

sub-models for chemical concentration and load model 

shows the RMSE for each HF discharge sub-model 

improved, especially in the HF discharge >12cfs category 

for chemical concentration model and in HF discharge 

<12cfs category for chemical load model, compared to 

when the model was performed without division. Based 

on the findings established in this study, it is 

recommended that similar modeling work should be 

conducted on other river basins in this region and the 

world if appropriate data is available. Furthermore, the 

study should involve incorporating additional river basin 

characteristics such as morphology, slope, surface 

roughness features, etc, as input variables to generate a 

more robust prediction of streamflow. 
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